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Consistent patterns of common species 
across tropical tree communities

Trees structure the Earth’s most biodiverse ecosystem, tropical forests. The vast 
number of tree species presents a formidable challenge to understanding these 
forests, including their response to environmental change, as very little is known 
about most tropical tree species. A focus on the common species may circumvent this 
challenge. Here we investigate abundance patterns of common tree species using 
inventory data on 1,003,805 trees with trunk diameters of at least 10 cm across 1,568 
locations1–6 in closed-canopy, structurally intact old-growth tropical forests in Africa, 
Amazonia and Southeast Asia. We estimate that 2.2%, 2.2% and 2.3% of species 
comprise 50% of the tropical trees in these regions, respectively. Extrapolating across 
all closed-canopy tropical forests, we estimate that just 1,053 species comprise half of 
Earth’s 800 billion tropical trees with trunk diameters of at least 10 cm. Despite 
differing biogeographic, climatic and anthropogenic histories7, we find notably 
consistent patterns of common species and species abundance distributions across 
the continents. This suggests that fundamental mechanisms of tree community 
assembly may apply to all tropical forests. Resampling analyses show that the most 
common species are likely to belong to a manageable list of known species, enabling 
targeted efforts to understand their ecology. Although they do not detract from the 
importance of rare species, our results open new opportunities to understand the 
world’s most diverse forests, including modelling their response to environmental 
change, by focusing on the common species that constitute the majority of their trees.

Tropical forests are a crucial component of the Earth system; they cover 
around 10% of the Earth’s land surface8 but contribute approximately 
33% of terrestrial net primary productivity9. They account for around 
40% of the carbon stored in live vegetation10 and are globally important 
carbon sinks11. Tropical forests are also extraordinarily biodiverse, 
harbouring two-thirds of all known species12 and the majority of the 
world’s biodiversity hotspots13. Of note, as many tree species can be 
found in a single hectare of tropical forest as in the entire native Western 
European tree flora14. Recent estimates suggest that there are approxi-
mately 37,900 named tropical tree species in the scientific literature15, 
with potentially thousands more yet to be identified by scientists16. This 
extraordinary diversity means that little is known about the biology of 
the vast majority of tropical tree species. Our understanding of tropi-
cal forest ecology, productivity and carbon storage and how they may 
respond to environmental change is hindered by this lack of knowledge. 
This limited understanding also curtails scientific input into land use, 
biodiversity, climate and other forest-related policy and management.

Our understanding of tropical forests may improve through a focus 
on the most common tree species. This is a promising avenue, given 
that species abundance distributions (SADs) showing a modest num-
ber of common species and much larger numbers of rare species have 
been documented across taxa globally17–19. Indeed, analyses of tropi-
cal forest inventory data from Amazonia have shown that a relatively 
small number of common species comprise a majority of trees in the 
region6,20–24. However, whether such patterns hold in other tropical 
forests is unknown, as there have been no comparable analyses for Afri-
can or Southeast Asian tropical forests. Perhaps, given the substantial 

differences in total tree species richness25, forest structure1, contem-
porary climate26 and biogeographic and human-occupancy histories7 
among continents, important contrasts in patterns of common species 
would be expected. Alternatively, if the same processes or mecha-
nisms apply to all tropical forests27, highly consistent patterns may be 
expected. Crucially, if a tractably modest number of common species 
do comprise the majority of tropical trees on Earth, this could open new 
ways of understanding tropical forests by investigating the ecology of 
the common species.

Cross-continental comparisons of common species patterns are 
complicated by unresolved differences in the results from published 
Amazon forest studies6,20,22. Estimates of hyperdominance—describ-
ing the minimum number of species required to account for 50% of 
all trees in a sample—range from 1.4% to 8.2% of the total number of 
species found in each of the Amazon forest datasets analysed (cor-
responding to 224 and 1,312 hyperdominant species respectively, 
assuming 16,000 Amazon tree species). Therefore, here we: (1) inves-
tigate sample-related biases and standardize our sampling to enable 
meaningful comparisons among datasets; (2) test whether patterns of 
hyperdominance differ across Amazonia, Africa and Southeast Asia; 
(3) extrapolate our results to assess how many species comprise half 
of all Earth’s tropical trees; (4) assess species abundance patterns, with 
differing classifications of ‘common species’ beyond hyperdominance; 
and (5) use resampling techniques to assess which sampled species are 
likely to be hyperdominant.

We analyse species abundance data from networks of inventory 
plots across three continents. We limit our analysis to closed canopy 
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structurally intact old-growth tropical forests. For Amazonia, defined 
as the lowland Amazon Basin and Guiana Shield, we use the Amazon 
Tree Diversity Network and RAINFOR datasets (n = 1,097 plots). For 
Africa, encompassing West, central and East Africa, we use the African 
Tropical Rainforest Observatory Network (AfriTRON)1, Central African 
Plot Network, and two smaller networks2,3 (n = 368 plots). For Southeast 
Asia, defined as extending from Myanmar in the West to Sulawesi in the 
East, we use a tree diversity4 and a carbon monitoring5 network (n = 103 
plots). We limit our analysis to trees with trunk diameter of at least 
10 cm at breast height (1.3 m along the stem or above any buttresses or 
deformities), the widely used minimum size for inventorying tropical 
trees. The combined dataset includes 1,003,805, trees, of which 93.3% 
are identified to species (Fig. 1 and Extended Data Table 1).

Consistent patterns of commonness
The Africa, Amazonia and Southeast Asia datasets differ in the number 
and size of plots sampled and the number of trees sampled (Extended 
Data Table 1). We therefore excluded small plots (below 0.9 ha; Extended 
Data Fig. 1 and Methods) and used rarefaction—that is, repeated random 
subsampling of plots to comparable numbers of trees—to standardize 
sampling across the three datasets (Fig. 2).

Rarefying to a common sample size of 77,587 stems, the size of the 
Asia dataset (equivalent to 150, 116 and 103 plots in Africa, Amazonia and 
Southeast Asia respectively), we find that 77 species (95% confidence 
interval: 62–92) in Africa comprise 50% of individual trees, compared 
with 174 species (95% confidence interval: 134–215) in Amazonia and 
172 species (95% confidence interval: 125–217) in Southeast Asia (Table 1 
and Fig. 2). However, the substantially lower number of hyperdominant 
species in Africa compared with Amazonia and Southeast Asia scales 
with the substantially lower number of total species. We find just 1,132 
species in our standardized 77,587 tree sample in Africa, compared with 
2,565 and 2,585 species in Amazonia and Southeast Asia, respectively 
for the same sample size. Consequently, percentage hyperdominance 
is statistically indistinguishable among the continents at 6.79% (95% 
confidence interval: 5.39%–8.20%), 6.80% (95% confidence interval: 
5.24%–8.36%) and 6.65% (95% confidence interval: 4.59%–8.71%) in 
Africa, Amazonia and Southeast Asia, respectively (Table 1). This consist-
ency is not affected by the aggregated spatial distribution of plots within 
each region (Extended Data Fig. 2) and holds true for analyses based 

solely on 1-ha plots (Methods). Thus, once sampling is standardized, 
there is marked pan-tropical consistency in the proportion of the total 
number of tree species accounted for by the most common species.

The consistency of commonness is not limited to defining common 
species as those that account for 50% of all individual trees in a dataset. 
The proportions of the total number of species required to account 
for thresholds between 10% and 90% of individual trees are also highly 
consistent across the rarefied data for the three continents (Fig. 3 and 
Extended Data Table 3). Thus, the data from the three continents appear 
to result from the same underlying statistical distribution.

Our rarefaction analysis shows that the number of hyperdominants, 
the total number of species and the percentage hyperdominance are 
dependent on sample size. This is because as plots—and therefore 
trees—are added to the sample, increasing numbers of rare species 
start to appear. Meanwhile, most common species have, by definition, 
already appeared, but their abundances increase. Thus, with increas-
ing sample size, the number of hyperdominants increases, but at an 
ever-decreasing rate that tends towards saturation (Fig. 2 and Extended 
Data Fig. 3). The total number of species increases at a decreasing rate 
with increasing sample size, without apparent saturation. Therefore, as 
sample sizes increase, the percentage hyperdominance decreases grad-
ually, but does not appear to saturate (Fig. 2 and Extended Data Fig. 3).  
This sample size dependence is likely to explain the published differ-
ences in percentage hyperdominance in Amazonian forests, which 
follow expectations given the sample size in each study6,20,22.

Amazonia and Southeast Asia show remarkably similar patterns of 
commonness and diversity. The rarefaction curves of the number of 
species accounting for 50% of all trees (Fig. 2a), total number of spe-
cies (Fig. 2b), percentage hyperdominance (Fig. 2c) and Fisher’s α—the 
parameter of the log series distribution shown to best describe tropical 
tree species abundance distributions21 (Fig. 2d)—are almost identi-
cal between the two datasets. Furthermore, the numbers of species 
required to account for any threshold between 10% and 90% of trees in 
the respective rarefied samples of 77,587 trees are statistically indistin-
guishable (Table 1 and Extended Data Tables 2 and  3). This equivalence 
in overall tropical forest diversity patterns between these similarly 
species-rich regions is particularly striking given their very different 
biogeographic, climatic and anthropogenic histories, and the fact that 
Amazonia is one large contiguous region, whereas Southeast Asia is a 
series of islands and island-like regions.

Fig. 1 | Location of the 1,568 plots, tropical forest regions, and tropical 
forest biome extent used in the study. Dots show the location of the plots 
analysed, coloured by continental region. Dark green shows the Amazonia, 

Africa and Southeast Asia regions that we extrapolate to. Light green shows 
‘tropical and subtropical moist broadleaf forests’60, which we extrapolate to as 
the closed canopy tropical forest biome.



Nature | www.nature.com | 3

In contrast to the similarity between Amazonia and Southeast 
Asia, our results provide sample size-corrected validation of the 
‘odd-one-out’ observation28,29 of much lower tree species richness in 
Africa compared with Amazonia and Southeast Asia. Here we add a 
similar odd-one-out observation of a much lower number of common 
species in Africa than in Amazonia and Southeast Asia. However, in 
combination these two results lead to an almost identical percent-
age hyperdominance in the African, Amazonian and Southeast Asian 
rarefied data. This consistency extends to the proportion of species 
required to account for all thresholds between 10% and 90% of trees in 
the rarefied data (Fig. 3 and Extended Data Table 3). This pan-tropical 
invariance recasts the tropical forests of Africa from ‘odd’ in terms of 

species richness to statistically indistinguishable from those in Amazo-
nia and Southeast Asia in terms of proportional patterns of abundance. 
Overall, using standardization by rarefaction, we find consistent pat-
terns of species abundance across Africa, Amazonia and Southeast Asia.

Scaling to the study region
Next, we estimate commonness patterns in each of our three study 
regions: Africa, Amazonia and Southeast Asia. We extrapolate log 
series fits to the empirical Africa, Amazonia and Southeast Asia data-
sets (Extended Data Fig. 4), including a correction to account for the 
clumped spatial occurrence of species, to the total number of trees 
with trunk diameter of at least 10 cm in each study region. We estimate 
that just 104 species (95% confidence interval: 101–107) account for 
50% of the 113 billion trees in Africa’s closed canopy tropical forests 
(Table 2). We also estimate that just 299 species (95% confidence inter-
val: 295–304) account for 50% of the 344 billion trees in Amazonia’s 
closed canopy tropical forest, and 278 (95% confidence interval: 268–
289) account for 50% of the 129 billion trees in Southeast Asia’s closed 
canopy tropical forests (Table 2). Our results from Amazonia match 
those derived using a different extrapolation approach30.

Our extrapolations again outline consistent percentage hyperdomi-
nance: just 2.2% of African, 2.2% Amazonian and 2.3% of Southeast 
Asian species account for 50% of all trees with trunk diameters of at 
least 10 cm in each region (Table 2). The dominant proportions of 
total species required to account for 10% to 90% of trees are also very 
similar across continents (Fig. 3 and Extended Data Table 5). The lower 
percentage dominance values from the extrapolated data compared 
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Fig. 2 | Rarefaction curves showing the effect of increasing sample size on 
the number of hyperdominants, total species, hyperdominant percentage 
and fitted values of Fisher’s α in tropical tree communities. a–d, The effect 
of increasing sample size on the number of hyperdominants (a), total species (b),  
hyperdominant percentage (c) and fitted values of Fisher’s α (d) in tropical 
Africa (magenta), Amazonia (cyan), Southeast Asia (blue). Rarefied data (mean 

values across iterations of subsamples) are shown as points joined by lines for 
clarity, shaded areas represent 95% confidence intervals (derived via the s.d. 
across iterations of subsamples taken with replacement at each sampling 
point). Note that resampling for rarefaction was by subsampling of plots, but 
curves are re-plotted on an x axis of number of stems.

Table 1 | Tree species hyperdominance results for African, 
Amazonian and Southeast Asian tropical forests, resampled 
to the common sample size of 77,587 trees

Number of 
hyperdominants

Total species Hyperdominant 
percentage

Fisher’s α

Africa 77 [62, 92] 1,132 [1,069, 
1,194]

6.79 [5.39, 8.20] 191 [161, 220]

Amazonia 174 [134, 215] 2,565 [2,419, 
2,711]

6.80 [5.24, 8.36] 525 [475, 575]

Southeast 
Asia

172 [125, 219] 2,585 [2,440, 
2,730]

6.65 [4.59, 8.71] 526 [476, 577]

Numbers in brackets are confidence intervals derived from the s.d. across iterations of  
subsamples taken with replacement at the sample size of the Asia dataset. Resampling  
done by plot; 77,587 is the size of the Southeast Asia dataset.
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with those from the rarefied data are consistent with the pattern, 
described above, of many more rare species being added as the num-
ber of trees increases while many fewer common species are added 
(Fig. 2). Overall, the extrapolated results show that there are a tractable 
number of common species in tropical forests in Africa, Amazonia and  
Southeast Asia.

Scaling to the tropics
We next estimate the number of common tropical tree species on Earth 
by multiplying the pan-tropical proportion of common species by the 
total number of tropical tree species on Earth. Our results suggest a 
pan-tropical hyperdominant percentage of 2.24% (Table 2). However, 
our extrapolations cannot provide an estimate of the total number of 
tropical tree species because we do not—for this study—have data from 
all tropical regions, including a lack of data from Central America, New 
Guinea and Micronesia. Furthermore, there is no consensus estimate 
of the total number of tropical tree species on Earth.

A compilation of lists of species known to science suggests a total of 
60,065 tree species globally15. Tropical forest biomes likely comprise 
63% of this list (E. Beech, personal communication, 2021), implying that 
there are around 37,900 known tropical tree species. This minimum 
estimate does not account for species that are yet to be identified and 
described by scientists. An alternative extrapolation method estimated 
that there are 46,900 species for the closed canopy tropical forest 
biome25 (range 40,500–53,300 species), implying that there are 9,000 
yet-to-be-identified species. This is in agreement with a recent global 
study suggesting that there are around 9,200 tree species remaining yet 
to be formally named, almost all in the tropics16. Thus, together, these 
studies suggest there are likely to be approximately 47,000 tropical 
tree species in the world’s closed canopy tropical forests.

Our best estimate is that 1,053 tree species (2.24% of 47,000 species) 
account for half of Earth’s 800 billion trees with trunk diameters of at 
least 10 cm found in the closed-canopy tropical forest biome. Although 
the true number may be lower or higher, the conclusion that a tractable 

number of species dominate tropical forests is clear. Some of these spe-
cies are likely to be extraordinarily common: our best estimate is that 
just 61 species account for 80 billion individual trees (0.13% of 47,000 
species). At the other end of the spectrum, we estimate that the rarest 
approximately 39,500 species account for just 80 billion trees, or 10% 
of individuals. Meanwhile, the other 90% of all trees are estimated to 
belong to just 7,487 species (15.93% of 47,000 species). Thus, these 
results open the possibility of focusing efforts on understanding the 
biology of a tractable number of species in tropical forests to approxi-
mate the whole stand.

Identifying the most common species
Our analyses showing that 104, 299 and 278 common species account 
for 50% of the trees in our African, Amazonian and Southeast Asian 
study regions, respectively, do not yield a list of named species. To 
assess which named species are likely to be hyperdominant, we use a 
subsampling procedure similar to the rarefaction methodology above. 
We randomly subsample from approximately 10,000 trees per subsam-
ple (drawn by plot) and increase the size of the subsample in 10,000-tree 
increments until the size of each regional dataset is reached, and repeat 
this process 100 times. For each sampled increment of 10,000 trees 
we then calculate the proportion of random subsamples in which each 
species qualifies as hyperdominant (Supplementary Table 1). We then 
assign the species to one of four groups:
(1)  Both hyperdominant in the full data and hyperdominant in the  

majority of subsamples even at very small sample sizes. These 50, 95 
and 105 species in our Africa, Amazonia and Southeast Asia datasets, 
respectively, represent 3.5%, 2.1% and 4.1% of sampled species in each 
dataset. These species are likely to be geographically widespread 
and abundant.

(2)  Both hyperdominant in the full data and hyperdominant in the 
majority of subsamples, but at the smallest sample sizes only  
occasionally hyperdominant. These 32, 129 and 67 species in our  
Africa, Amazonia and Southeast Asia datasets, respectively, repre-
sent 2.3%, 2.9% and 2.6% of sampled species in each dataset. These 
species are likely to be geographically widespread but not always 
abundant.

(3)  Not quite hyperdominant in the full data, but hyperdominant in 
a substantial proportion of subsamples. These 102, 339 and 200 
species in our Africa, Amazonia and Southeast Asia datasets,  
respectively, represent 7.2%, 7.5% and 7.7% of sampled species in 
each dataset. These species are probably locally abundant but not 
necessarily geographically widespread.

(4)  Not hyperdominant in the full data and almost never hyperdominant 
in the subsamples. These 1,232, 3,929 and 2,213 species in our Africa, 
Amazonia and Southeast Asia datasets, respectively, represent 87%, 
87.5% and 85.6% of sampled species in each dataset. These species 
are probably neither geographically widespread nor abundant.

Table 2 | Extrapolated tree species hyperdominance results 
for African, Amazonian, Southeast Asian tropical forests at 
the regional scale

Number of 
hyperdominants

Total species Hyperdominant 
percentage

Africa 104 [101, 107] 4,638 [4,511, 4,764] 2.23

Amazonia 299 [295, 304] 13,826 [13,615, 14,036] 2.16

Southeast Asia 278 [268, 289] 11,963 [11,451, 12,475] 2.32

Totala 681 [664, 700] 30,427 [29,577, 31,275] 2.24
aCalculated as the sum of the number of hyperdominants and total species across the three 
major tropical forest regions with hyperdominance percentage derived therefrom. Prediction 
intervals (in brackets) combine uncertainty from the standard error of predicted means and 
the residual s.d. of the regression of the bias correction fit.
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We suggest that if all trees in a region were sampled, the hyperdomi-
nant species would be drawn from the first three groups, which are 
listed in Supplementary Table 2. This candidate list of 1,119 hyperdomi-
nant species contains 184 species in Africa, 563 species in Amazonia 
and 372 species in Southeast Asia, with no species appearing on more 
than one region’s list. Thus, the list of species that are likely candidates 
for hyperdominance is manageably small.

There is uncertainty in our candidate hyperdominant list owing to 
the limitations of the underlying samples of plots across the landscape. 
Specifically, some species that always have low local abundance but are 
geographically widespread and lack habitat restrictions may require 
larger sample sizes for their hyperdominance to become clear. Simi-
larly, species that combine low local abundance and habitat specificity 
pose challenges. If the distribution and extent of specialist habitat 
is great enough to result in hyperdominance of specialists but is not 
sufficiently captured in our sampling, such species might not appear 
in our candidate list. By contrast, some species in our candidate hyper-
dominant list will not be true hyperdominants. Of particular note, some 
apparently common species may actually comprise a group of cryptic 
species, with none of these cryptic species being hyperdominant by 
itself31–33. However, the striking similarly in species abundance pat-
terns across the Africa, Amazonia and Southeast Asia datasets, despite 
differing sampling intensity on each continent, suggests that these 
potential limitations do not substantially affect the overall patterns 
found. We therefore expect a high overlap between our list of candi-
date hyperdominant species and eventual elucidation of the actual 
hyperdominants of these three regions and the pan-tropics.

Our list of 1,119 candidate hyperdominant species represents a trac-
table number of species on which to prioritize autecological research. 
Indeed, given their commonness, ecological data already exists for 
many of these species: 95% have some autecological data recorded in a 
large global database34; 83% have at least 10 different types of measure-
ment, typically including their growth form, maximum height, wood 
density and aspects of leaf chemistry. This indicates that these species 
are already relatively well known. Therefore, only limited additional 
data may be required to open new approaches to better understanding 
tropical forests through their most common tree species, including how 
they may react to today’s era of rapid global environmental change.

Discussion
Charles Darwin wrote in The Origin of Species that “rarity is the attribute 
of a vast number of species of all classes and in all countries”35. If this is 
the case, then common species are themselves rare. Our results concur: 
despite their formidable diversity, the trees in tropical forests fit the ‘rare 
is common, common is rare’ pattern36 which has been documented in 
many other taxa17–19,36,37. Beyond this, our analyses reveal highly consist-
ent patterns of commonness across three major tropical forest regions. 
Notably, despite substantial inter-continental variation in biogeographic 
history, contemporary environment, forest structure and species com-
position, we have found an emergent property of the tropical forest 
system. For the trees that structure tropical forests, a consistent ~2.2% 
of the total species pool accounts for 50% of all individual trees in Africa, 
Amazonia and Southeast Asia. This consistency is all the more notable 
given relatively lower tree species richness of African tropical forests 
compared with Amazonian and Southeast Asian forests, probably owing 
to higher extinction rates in African forests, with evidence of major 
losses of African species at the Oligocene–Miocene boundary38, and 
contractions of rainforest area due to drier conditions during repeated 
glacial–interglacial cycles over the past 2.6 million years39.

We find common diversity patterns despite the very different histo-
ries of human occupancy in Amazonian, African and Southeast Asian 
tropical forests40. The relatively recent arrival of humans in Amazonia 
approximately 20,000 years ago has been linked to greater Pleisto-
cene extinctions, in contrast to much longer human occupancy in the 

tropical forests of Africa and Southeast Asia41. Some have also sug-
gested that Amazonian forest composition was altered by humans 
through the incipient domestication of tree species, increasing the 
abundance of a small number of favoured species42. Others have 
reported large areas of deforestation associated with the African Iron 
Age43. How can such different human histories result in near-identical 
patterns of tree species dominance? The most parsimonious explana-
tion is that the system tends to return to a state with a similar species 
abundance pattern.

Nevertheless, consistent patterns of commonness do not necessarily 
imply the same causal mechanisms. The ubiquity of the broad ‘rare is 
common, common is rare’ pattern in ecology, which is also found in 
non-biological complex systems44, means inferences as to the cause of 
this broad pattern are challenging27,45. Although combinatoric meth-
ods45 and models that maximize the entropy of information46,47 both 
produce the ubiquitous ‘reverse lazy-J’ pattern, empirical observations 
show fewer common species and more rare species than expected by 
statistical controls alone45. Similarly, neutral models produce the same 
broad pattern, but produce too few individuals of the most common 
Amazonian tree species48. This suggests that biological mechanisms 
influence tree community assembly to produce a consistent propor-
tion of common species across continents.

Recent analyses have revealed that the same few families contribute 
most of the species richness in Africa and Amazonia49, which when 
combined with analyses showing that more diverse families have more 
common species50, may indicate a role for deep evolutionary mecha-
nisms driving the patterns we find. Yet, considering the substantially 
smaller regional species pool in Africa compared with Amazonia and 
Southeast Asia, one might expect differing continental patterns of spe-
cies dominance if evolutionary drivers were the primary mechanism, 
not the highly consistent patterns that we find. Similarly, if environ-
mental filtering were a key mechanism, the different contemporary 
environments, with Africa much drier on average than the other two 
continents26, and Southeast Asia consisting of scattered island-like 
areas of forest compared with the contiguous forested region of 
Amazonia, would also imply differing continental patterns of species 
dominance, not the near-identical patterns that we find. These con-
straints limit the potential mechanisms that could apply across our 
three-continent context.

One potential cross-continental mechanism is dispersal limitation, 
where the dispersal capabilities of species result in some suitable habi-
tat patches remaining unoccupied. Another mechanism is density- or 
distance-dependent mortality, which appears widespread across tropi-
cal forests51. Here, specialist species-specific natural enemies such as 
pathogens and herbivores reduce seed or juvenile conspecific survival 
rates near conspecific adults or in areas of high juvenile conspecific 
density, thereby reducing competitive exclusion and contributing to 
the maintenance of high tree species richness in tropical forests51. It 
is possible that common species have largely evaded density- and/or 
distance-dependent mortality. Analyses showing that species abun-
dance can be either high or low within given genera52 support this 
hypothesis. Further progress on putative mechanisms can be made, 
for example, by exploring whether ecological or functional traits dif-
fer between common and rare species, and assessing the consistency 
of any differences among tropical continents53. Although deducing 
mechanisms is complex, the identification of a tractable number of 
common species in tropical forests will facilitate progress in under-
standing of tropical forests beyond species abundance distributions.

Refining our results, particularly the naming of common species, 
requires improved sampling of tropical forests, both in terms of  
geographic scope and taxonomic identification of trees within plots. 
Expanding sampling to include Central America, New Guinea, Micro-
nesia and other regions would improve the generality of our results. 
Better identifying trees in existing plots would increase the utility of 
available samples: in our Southeast Asia region we excluded 142 plots 
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(approximately 120,000 stems) because they did not have more than 
80% of trees identified to species. Furthermore, additional taxonomic 
research on even the most common species is needed given that some 
of the most common Amazonian33 and African54,55 tree species have 
been found to be complexes of several distinct species that are difficult 
to distinguish in the field. However, the similarity of our results across 
the three continental regions suggests that the occurrence of such 
species complexes may also be similar across the continental regions, 
again implying the operation of fundamental processes in differing 
forests. Overall, our work underscores the need for investment in tax-
onomy, particularly given the thousands of rare species we and others18  
document, but also when considering the most common species.

Our best estimate, using extrapolation, that for the tropics as a whole 
just 1,053 species account for half of Earth’s 800 billion tropical trees 
has potentially profound implications. Rather than attempting to 
understand tens of thousands of species of tropical trees, a focus on 
just a few hundred of the most common species can provide a simpli-
fied characterization of these otherwise complex forests. Our analyses 
indicate that the most common of these species are reliably named 
and relatively well known. Our list of candidate hyperdominants can 
therefore readily serve new research, including in facilitating targeted 
autecological data collection to understand their role in providing 
ecological functions and services. Practically, this species-specific 
information could enhance tropical forest modelling by focusing on 
common species instead of relying on functional types or traits, thereby 
potentially improving predictions of future forest change.

In the future, analyses should be extended to investigate forest car-
bon stocks and hyperdominant species and their role in the provision 
of ecosystem services. In Amazonia, even fewer tree species were found 
to account for 50% of aboveground carbon stocks than the minimum 
number required to account for 50% of trees22. More generally, the set 
of common species is likely to include foundation species that define 
broader community assemblages, the environmental sensitivity of 
which will probably drive tropical forest responses to environmen-
tal change56. Of course, striving to understand and protect rare and 
non-hyperdominant species remains crucial, particularly as they face 
greater extinction risk and probably also contribute to the functioning 
of ecosystems, particularly when more functions57, longer timescales58 
and imposed environmental changes59 are considered, and given that 
the hyperdominants of the future may be rarer today. Nonetheless, 
with a complementary grasp of the most common species, mapping, 
understanding and modelling of the world’s tropical forests will be a 
much more tractable proposition.
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Methods

Data compilation and pre-processing
We collated data from forest inventory plots ≥0.2 ha in size, situated in 
structurally intact (no detectable past logging or fire), closed canopy 
(not dry forest or savanna) tropical forest, with enumeration of all stems 
≥10 cm diameter, in which ≥ 80% of stems are identified to the species 
level. Following Sullivan et al.61, small (≤0.5 ha) plots within 1 km of each 
other were grouped for analysis to minimize the effect of stochastic tree 
fall events in smaller areas62. These criteria allow direct comparisons 
to be made with hyperdominance results from Amazonia6,21. The data 
from each continent comprise the following:

Africa: 483 plots, covering a total of 504 ha (mean plot area 1.04 ha, 
median 1 ha, range 0.2–10 ha). These data are from four sources: 299 
plots from the African Tropical Rainforest Observatory Network1,63 
(AfriTRON: www.afritron.org, accessed 1 March 2020), curated at 
http://www.ForestPlots.net64; 127 plots from the Central African Plot 
Network (https://central-african-plot-network.netlify.app); 52 plots 
from the TEAM network2; and 5 × 1 ha plots from 5 different soil types, 
extracted from one 50-ha plot in Korup, Cameroon from the SIGEO/
CTFS network3.

Amazonia: 1,417 plots, covering a total of 1,591 ha (mean plot area 
1.12 ha, median 1 ha, range 0.1–78.8 ha) from the Amazon Tree Diversity 
Network (ATDN: http://atdn.myspecies.info/, includes plots from the 
RAINFOR network), accessed 8 January 2020.

Southeast Asia: 230 plots, covering a total of 202 ha (mean plot area 
0.88 ha, median 0.49 ha, range 0.21–4.5 ha). These data are from two 
sources: 143 plots from Slik et al.4,25—a decrease from the published 
Indo-Pacific dataset in Slik et al.4,25 due to our ≥80% species identifica-
tion criterion and our Southeast Asia study region excluding Australia, 
India, and Papua New Guinea; and 87 plots from the T-Forces network64 
curated at http://www.ForestPlots.net, accessed 03/02/2021.

Species names were checked for orthography and standardized 
(synonyms identified from the reference databases corrected to their 
accepted names) using the African Flowering Plants Database (https://
www.ville-ge.ch/musinfo/bd/cjb/africa), Taxonomic Name Resolution 
Service65, and Asian Plant Synonym Lookup (F. Slik, personal commu-
nication), for Africa, Amazonia and Southeast Asia, respectively. Trees 
not identified to species level (7.3%, 6.3% and 8.4% of stems in the Africa, 
Southeast Asia datasets respectively) were classed as ‘indeterminate’ 
(Indet). Indet stems contributed to plot-level and dataset-wide stem 
abundance totals but are necessarily absent from species totals.

For the purposes of our study we delimited tropical forests according 
to the ‘tropical and subtropical moist broadleaf forests’ biome delinea-
tion from the World Wildlife Fund ecoregion map60. The total number 
of tropical trees ≥10 cm trunk diameter in each of our regions was then 
estimated by summing tree abundances in countries in which we have at 
least one sampled plot from the ‘map of Global Tree Density’66 (derived 
from 429,775 ground-based estimates of tree density) and masking 
according to the ‘tropical and subtropical moist broadleaf forests’ bor-
ders using ArcGIS v3.10.167. Thus, we estimate that there are ~92 billion, 
~331 billion trees, and ~217 billion trees in our Africa, Amazonia, and 
Southeast Asia regions, respectively, totalling 640 billion trees. Includ-
ing abundance from countries in the ‘tropical and subtropical moist 
broadleaf forests’ biome in which we have no sampled plots, we esti-
mate ~799 billion total trees across all of Earth’s moist tropical forests.

Data format, commonness and diversity parameters
The species abundance distribution (SAD), defined as a vector of abun-
dances (number of individuals observed) of all species encountered in 
a community17, formed the basis for our analyses of the three tropical 
forest datasets. For each dataset, we tallied the number of trees of 
each species in each plot to give plot-level SADs and combined these 
SADs across all plots to get regional-level abundance matrices with 
rows representing plots, columns representing species, and entries 

representing the abundance of each species in each plot. To capture 
patterns of commonness and species composition we calculated the 
number of hyperdominants (H#), defined as the minimum number 
of species required to account for 50% of the population of an assem-
blage6, hyperdominant species identities, total number of species (TS), 
hyperdominant percentage of total species (H% = H#/TS) and Fisher’s 
α (ref. 68). To investigate the sensitivity of results to the ‘hyperdomi-
nant’ definition of the most common species, we looked beyond the 
50% threshold used for hyperdominance, at the minimum number of 
species required to account for 10%, 20%, 30%, …, 90% of the popula-
tion, here termed ‘dominants’.

Sampling standardization, subsampling and comparison of 
continental data
We identified variations in the number of plots, stems, and species, 
and the size and spatial clustering of plots as potential confounding 
factors liable to skew dominance and diversity results from our regional 
datasets and impede rigorous comparisons between them. We used 
sample-based rarefaction to quantify and account for the effect of 
differences in sample size (number of plots and stems) on our diversity 
measures of interest; namely species richness, number, ranking and 
identity of hyperdominants, hyperdominant percentage of total spe-
cies, and Fisher’s α. To quantify the effect of plot size, which is smaller in 
Southeast Asia data (mean 0.88 ha, median 0.49 ha) than in Amazonia 
and Africa data (both mean ~1 ha, median 1 ha) we compared results 
from the full data to those from plots >0.9 ha. We found that small plots 
(≪1 ha) inflate per-plot species totals relative to larger plots (because 
the rate of encountering new species is higher the smaller the plot 
size; Extended Data Fig. 1), so we limited our analyses to plots >0.9 ha 
to enable like-for-like comparison.

For Africa, we retained 368 plots covering 450 ha (mean plot area 
1.22 ha, median 1 ha, range 0.92–10 ha; 2% of plots 0.9–0.99 ha, 88% 
of plots 1 ha, 8% of plots 1.01–5 ha, 1% of plots >5 ha) with mean tem-
perature of 24.3 °C (range 16.2–27.6 °C), mean annual precipitation 
1,802 mm yr−1, (range 1,066–2,747 mm yr−1), and mean elevation of 511 m 
above sea level (range 41–2,070 m) per WorldClim69. For Amazonia we 
retained 1,097 plots covering 1,434 ha (mean plot area 1.31 ha, median 
1 ha, range 0.9–78.8 ha; 2% of plots 0.9–0.99 ha, 90% of plots 1 ha, 7% 
of plots 1.01–5 ha, 1% of plots >5 ha) with mean temperature of 26.0 °C 
(range 20.9–27.6 °C), mean annual precipitation 2,397 mm yr−1 (range 
1,119–4,284 mm yr−1), and mean elevation of 154 m (range 0–1,142 m). 
For Southeast Asia we retained 103 plots covering 164 ha (mean plot 
area 1.59 ha, median 1 ha, range 0.96–4.5 ha; 1% of plots 0.9–0.99 ha, 
48% of plots 1 ha, 52% of plots 1.01–5 ha, 0% of plots >5 ha) with mean 
temperature of 25.7 °C (range 20.1–27.5 °C), mean precipitation 
2,680 mm yr−1 (range 1,466–3,941 mm yr−1), and mean elevation of 288 m 
(range 10–934 m). We assessed if the remaining differences in plot 
size affected the results, using only the 1 ha plots from Africa (n = 323) 
and Amazonia (n = 988), rarefied to the size of the Asia dataset, again 
finding near-identical per cent hyperdominance on the two continents 
(Africa: 7.30%, 95% confidence interval: 6.56–8.04; Amazonia: 7.35%, 
95% confidence interval: 6.61–8.10).

To quantify the effect of the spatial clustering of plots, we compared 
results from the full Amazonia data, as the largest dataset, to those from 
subsets of the Amazonia data in which 1,2,3,…,10 plots were sampled 
from each spatial cluster. We found that spatial clustering had a negli-
gible and not statistically significant effect on hyperdominant percent-
age and fitted values of Fisher’s α (Extended Data Fig. 2). Therefore, we 
retain all plots for our analyses to maximize sample sizes. Computation 
of percentage hyperdominance and dominance accounts for the effects 
of variations in species richness on the number of hyperdominants 
and dominants.

For sample-based rarefaction, 200 subsamples of 1, 2, …, Np plots 
were drawn, without replacement, from the Np total number of plots in 
the pth dataset, the stems contained in each subsample were pooled, 

http://www.afritron.org
http://www.Forestplots.net
https://central-african-plot-network.netlify.app
http://atdn.myspecies.info/
http://www.Forestplots.net
https://www.ville-ge.ch/musinfo/bd/cjb/africa
https://www.ville-ge.ch/musinfo/bd/cjb/africa
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and the mean total species, number of hyperdominants, hyperdomi-
nance percentage, and Fisher’s α were calculated across the subsam-
ples. Similarly, we tallied the number of subsamples in which each 
species in the dataset qualified as hyperdominant at each level of sub-
sampling and compared results between datasets at subsample sizes 
equating to a mean 10,000, 20,000, …, Ip individual trees, where Ip is 
the total number of trees in the pth dataset. Confidence intervals were 
calculated as confidence interval = μ ± 1.96 × σ, where μ values are the 
means of the diversity metrics calculated across the 200 iterations of 
subsamples taken without replacement, and σ values are the s.d. of 
the mean of diversity metrics calculated across the 200 iterations of 
subsamples taken with replacement (to reduce the degree to which 
confidence intervals were conditional on the sample). For point esti-
mates, all datasets were compared at the common sample size of the 
Southeast Asia dataset (77,587 stems equivalent to 150, 116 and 103 
plots in Africa, Amazonia and Southeast Asia, respectively).

Extrapolation and bias correction of log series fits to the 
empirical data
We extrapolated our empirical SADs to SADs at the scale of the entire 
Amazonian, African, and Southeast Asian regional level via analytical 
expansion and bias correction of Fisher’s log series fits following the 
methodology of ter Steege et al.21 developed using the ATDN data that 
comprise our Amazonia dataset.

Ter Steege21 et al. found that simulations of sampling of plots with 
conspecific aggregation from log series-modelled SADs provide 
extremely good approximations of the processes that generate tropi-
cal forest inventory data—that is, non-random sampling of plots con-
taining species with limited dispersal and/or ecological preferences. 
They further found that estimates of species richness derived from 
samples taken with conspecific aggregation from the simulated SADs 
substantially underestimated the true species richness of the simulated 
SADs, but that a linear relationship with low variance existed between 
the true and sample-derived values. Thus, although conspecific aggre-
gation in the empirical data introduces bias in the log series-modelled 
SADs extrapolated therefrom, quantification and correction of the 
effects of this bias on regional estimates of species richness is possible. 
Therefore, to estimate species richness at the regional level, they fitted 
Fisher’s log series to empirical species abundance data, quantified the 
effect of conspecific aggregation on these estimates via simulation, 
and applied quantified corrections to give more accurate estimates of 
regional species richness taking into conspecific aggregation. Thus, 
this approach corrects for species-specific aggregation at the plot 
scale depending on species density.

To estimate regional numbers and proportions of dominants and 
hyperdominants as well as species richness, we extended the method-
ology of ter Steege et al.21 to log series-derived estimates of regional 
numbers and proportions of dominants and hyperdominants. Initially, 
values of Fisher’s α were fitted to the empirical species abundance 
vectors from each region using maximum likelihood and numerical 
optimization in the ‘sads’ R package70 and fits visualized with Preston 
plots71 and rank abundance distributions (RAD)36 (Extended Data Fig. 4). 
Regional species totals S, not accounting for bias introduced by con-
specific aggregation, were then estimated68 via ( )S α= × ln 1 + N

α
 with 

total number of trees ≥10 cm trunk diameter at the continental level 
(N) from the Global Tree Density map of Crowther et al.66 with each 
tropical region delineated within the ‘tropical and subtropical moist 
broadleaf forests’ biome of Olson et al.60. An inverse quantile function 
from the sads R package70 was then applied to generate (uncorrected) 
continental-scale SADs for each region using the above fitted α, esti-
mated S and N.

For the quantification of bias and computation of corrections, we 
first simulated 250 log series SADs with known values of total species, 
Sk, randomly drawn from the range of plausible regional species totals 
(10,000–25,000 in Amazonia and Southeast Asia; 2,000–10,000 in 

Africa) and N, the number of trees in each region ≥10 cm trunk diam-
eter from Crowther et al.66. We calculated known values of numbers of 
hyperdominants, Hk, and percentage hyperdominance, Pk, from each 
of these simulated distributions. Using a negative binomial distribution 
to simulate conspecific aggregation per ter Steege et al.21, we then 
simulated j random samples of 1-ha plots from each of the 250 simulated 
SADs, with j equal to the number of plots in the empirical data, and the 
expected abundance of each species in each plot equal to its mean 
regional density (total abundance/regional area). We then estimated 
(uncorrected) species richness, Su, from each of the samples by fitting 
Fisher’s α to the sampled data and applying the formula ( )S α= × ln 1 +u

N
α

.  
From each of the samples we also derived continental-scale uncor-
rected SADs (see above), from which the number of hyperdominants, 
Hu, and percentage hyperdominance, Pu, could be directly calculated, 
via analytical expansion of the log series using the fitted values of α 
and corresponding values of Su. We then regressed the known values 
of Sk, Hk and Pk from the simulated SADs against the estimated (uncor-
rected) values Su, Hu and Pu from the samples drawn with conspecific 
aggregation across all 250 simulations—that is, fit linear models of the 
form Ak = m × Au + c for A = S, H, P. This same procedure was also applied 
to the number and proportion of dominants.

Across all three regional datasets, the above procedure outlined a 
linear relationship with low variance between known values of species 
richness, number of dominants and hyperdominants, and percentage 
hyperdominance and dominance, and values thereof estimated from 
sampling with conspecific aggregation (Extended Data Fig. 5). Thus, 
constant terms with low variance were readily applicable to correct 
for bias in the point estimates of species richness, number of domi-
nants/hyperdominants, and percentage hyperdominance/dominance, 
derived from the empirical Africa, Amazonia, and Southeast Asia data. 
To capture uncertainty around each bias-corrected point estimate, 
prediction intervals (PI) were derived as PI = μ + 1.96 × σPI, where μ is 
the predicted mean value of the point estimate according to the linear 
regression, and σPI is the PI standard error, calculated as σ σ σ= +PI

2
R
2 , 

where σ is the standard error of predicted means and σR is the residual 
s.d. (and 1.96 is the 0.05 quantile of a t-distribution).

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The species abundance data that support the findings of this study are 
available from https://doi.org/10.6084/m9.figshare.21670883 (format-
ting notes: a column for each species, rows for each plot, entries are 
the number of trees ≥10 cm diameter of each species in each plot). 
WorldClim69 bioclimatic data are available from https://www.worldclim.
org/data/bioclim.html.

Code availability
R code (version 4.3.1) to run the analyses and produce the figures and 
tables is available from https://github.com/declancooper/Common-
Species2022.git.
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Extended Data Fig. 1 | Impact of plot size on rarefaction curves of total 
species (a) and number of hyperdominants (b) in the Asia data. Red points 
represent the full Southeast Asia data (mean values across iterations of 

subsamples), including all plot sizes (mean plot size: 0.877 ha, median plot size: 
0.5 ha); Purple points represent the Southeast Asia data restricted to plots 
≥0.9 ha (mean plot size: 1.59 ha, median plot size: 1 ha).



Extended Data Fig. 2 | Impact of spatial clustering of plots on rarefaction 
curves of hyperdominant percentage (first row) and Fisher’s Alpha (second 
row) in the Amazonia data. Purple points and confidence intervals represent 
the full data; black points and confidence intervals represent a subset of the 
data in which one plot is sampled from each spatial cluster of plots; other 
coloured points represent subsets of the data in which 2,3,4,…,10 plots (or the 

total number of plots in the cluster) are sampled from each spatial cluster of 
plots. Points give the mean values across iterations of subsamples. Confidence 
intervals are derived via the standard deviation across iterations of subsamples 
taken with replacement at each sampling point. Note that although resampling 
for rarefaction was done by subsampling tree inventory plots, the curves are 
re-plotted with an x-axis of number of stems.
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Extended Data Fig. 3 | Complete rarefaction curves showing the effect of 
increasing sampling on the number of hyperdominants (a), total species (b),  
hyperdominant percentage (c), and fitted values of Fisher’s α (d). In tropical 
Africa (magenta), Amazonia (cyan), Southeast Asia (blue). Markers represent 
rarefied points (mean values across iterations of subsamples); shaded areas 

represent confidence intervals (CIs). Confidence intervals are derived via the 
standard deviation across iterations of subsamples taken with replacement at 
each sampling point. Note that although resampling for rarefaction was done 
by subsampling tree inventory plots, the curves are re-plotted with an x-axis of 
number of stems.



Extended Data Fig. 4 | Preston plots (top row) and rank abundance 
distributions (bottom row) showing the empirical species abundance 
distributions for Africa (left) Amazonia (middle) and Southeast Asia (right) 
with log series fits overlaid. Histogram bars display the empirical species 
abundance distributions as Preston plots (top row); black markers show the 

empirical species abundance distributions as rank abundance distributions 
(bottom row); overlaid points and lines show log series fits to empirical species 
abundance distributions in Africa (magenta), Amazonia (cyan), and Southeast 
Asia (blue).
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Extended Data Fig. 5 | Bias correction of estimates of species richness  
(first column), number of hyperdominants (second column), percentage 
hyperdominance (third column) for the Amazonia (first row), Africa 
(second row) and Southeast Asia (third row) datasets. X-axes show estimated 
values derived from samples of the simulated communities taken with 
conspecific aggregation, Y-axes show true values of the simulated communities. 
Points show estimated true values for each of the 250 simulated communities. 

1:1 equivalence shown by straight line in each plot. For number of 
hyperdominants and total species plots, simulated communities containing 
100 to 25,000 species in Amazonia and Southeast Asia, 100 to 10,000 species 
in Africa are shown. For percentage hyperdominance, simulated communities 
containing 10,000 to 25,000 species in Amazonia and Southeast Asia, 2,000 to 
10,000 species in Africa are shown.



Extended Data Table 1 | Empirical summary statistics and hyperdominance results for tree species data in Africa, Amazonia, 
and Southeast Asia

#H = Number of hyperdominants, TS = Total Species, H% = Percentage hyperdominance, α = Fisher’s α, Stems = Total number of stems, Plots = Total number of plots, %ID = Percentage of stems 
identified to the species level.
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Extended Data Table 2 | Rarefied minimum number of species required to account for 10%, 20%, …, 90% of trees in the Africa, 
Amazonia, and Southeast Asia data, resampled to the common sample size of the Asia dataset (77,587 stems)

Percentage headings represent the different dominance thresholds. Confidence intervals are derived from the standard deviation across iterations of subsamples taken with replacement at the 
sample size of the Asia dataset.



Extended Data Table 3 | Rarefied proportion of total species required to account for 10%, 20%, …, 90% of trees in the Africa, 
Amazonia, and Southeast Asia data, resampled to the common sample size of the Asia dataset (77,587 stems)

Percentage headings represent the different dominance thresholds. Confidence intervals are derived from the standard deviation across iterations of subsamples taken with replacement at the 
sample size of the Asia dataset.
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Extended Data Table 4 | Extrapolated minimum number of species required to account for 10%, 20%, …, 90% of trees in 
Africa, Amazonia, Southeast Asia, and the cross-regional total at the regional scale

Percentage headings represent the different dominance thresholds. Prediction intervals combine uncertainty from the standard error of predicted means and the residual standard deviation 
of the regression of the bias correction fit. ‘Total’ minimum number of species required to account for 10%−90% of trees across all of the regions are calculated as the sum of the number of 
hyperdominants across the three major tropical forest regions.



Extended Data Table 5 | Extrapolated proportion of total species required to account for 10%, 20%, 30%, …, 90% of trees in 
Africa, Amazonia, Southeast Asia, and the cross-regional total at the regional scale

Percentage headings represent the different dominance thresholds. ‘Total’ minimum proportion of total species required to account for 10%−90% of trees across all of the regions are calcu-
lated as the proportion between the sum of the number of hyperdominants and the sum of total species across the three major tropical forest regions.
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