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Tree growth and longevity trade-offs fundamentally shape the terrestrial carbon balance. Yet, we lack a unified
understanding of how such trade-offs vary across the world’s forests. By mapping life history traits for a
wide range of species across the Americas, we reveal considerable variation in life expectancies from
10 centimeters in diameter (ranging from 1.3 to 3195 years) and show that the pace of life for trees can be
accurately classified into four demographic functional types. We found emergent patterns in the strength of
trade-offs between growth and longevity across a temperature gradient. Furthermore, we show that the
diversity of life history traits varies predictably across forest biomes, giving rise to a positive relationship
between trait diversity and productivity. Our pan-latitudinal assessment provides new insights into the
demographic mechanisms that govern the carbon turnover rate across forest biomes.

T
he cumulative energetic investment in
survival and growth from one year to the
next ultimately determines an organism’s
overarching pace of life, including the
time it takes to grow to its maximal size

and its life expectancy (1, 2). This fundamental
relationship between energetic investments,
developmental schedules, and longevity has
been extensively studied for animals, showing
that high resource allocation toward growth is
inversely related to life expectancy and maxi-
mal bodymass (3, 4). Trees are also assumed to
retain tightly coupled relationships between
growth strategies, life expectancies, and max-
imal sizes (Fig. 1A) (5), which determine the
dynamics and structure of global forests. Yet,
although these life history differences funda-
mentally regulate how fast carbon is sequestered
in different regions of the vegetation carbon
pool (6–8), we still lack a unified understand-

ing of the range of tree life history strategies
that exist across global forests.
It is widely accepted that tree life history

strategies should align along a primary axis of
variation in their pace of life, ranging from fast-
growing, short-lived species to slow-growing,
long-lived species (i.e., fast-slow continuumand
r/K selection theory) (Fig. 1A) (5). In this con-
text, high energetic investment of finite re-
sources toward fast growth is expected to
come at the cost of reduced survival, which
ultimately determines a species’ life expectancy
and maximal size (Fig. 1A) (9–11). Thus, it is
expected that abiotic constraints (e.g., soil nu-
trients, water, and temperature) should strongly
shape the pace of life for trees, giving rise to
predictable variation in the strength of life
history trade-offs across biogeographic gra-
dients (Fig. 1B) (12). So far, however, the only
empirical tests of these trade-offs come from

tree ring data and local-scale studies from
tropical ecosystems and have produced mixed
results (2, 12–14).
One potential challenge that can obscure pre-

dictable patterns in the pace of life for trees
is that it is not only the traits that are expected
to vary across environmental gradients but
also the diversity of those traits. For example,
strong biotic competition across tropical forests
is thought to have led to high demographic
niche differentiation (i.e., high demographic
diversity; Fig. 1C, upper right). By contrast,
resource limitations in harsh cold and dry
regions are assumed to have restricted the
species pool to predominantly slow-growing,
long-lived species (Fig. 1C, lower left). Yet,
these suppositions lack empirical evidence to
support thembecause the extreme longevity of
trees (which can live for thousands of years)
has precluded our capacity to quantify the
strength of tree life history trade-offs across
a wide range of species, let alone character-
ize the diversity of life history traits across
biogeographic gradients.
In this study, we used the largest dataset of

dynamic tree information to date and used
age-from-stage methods to calculate the mean
life expectancy and maximal life span for a
wide range of trees across the Americas (15–17),
spanning a latitudinal gradient from North-
ern Canada to Southern Brazil. This includes
long-term records from an international net-
work of researchers, including members of
the Global Forest Dynamics, ForestPlots.net
(18, 19), and ForestGeo (20–22) networks and
the United States and Canadian forest inven-
tory programs (23–25). To balance this dataset
across our biogeographic gradient, we ran-
domly subsampled the North American plots
to equal the number of point observations in
Central and South America [see supplemen-
tary materials (SM), materials and methods],
resulting in 3.2 million distinct tree measure-
ments for 1127 species (i.e., tree size and sta-
tus). Our big-data approach allowed us to test
for the expectation that trees align along the
fast-slow continuum (Fig. 1A, H1) and to quan-
tify whether tree growth–longevity–stature
relationships covary across soil, water, and
temperature gradients (Fig. 1B, H2). Apart
from species with low occurrences (<100 obser-
vations; see SM, materials and methods), our
systematic sampling allowed us to test for the
expectation that the range of life history strat-
egies occupied by species (i.e., demographic trait
diversity) varies predictably across broadscale
biogeographic gradients, with harsh cold re-
gions in the Northern Hemisphere restricting
trees to a smaller pool of predominantly slow-
growing, long-lived species (Fig. 1C, H3). On the
basis of thewell-establisheddiversity-productivity
relationship, we also expected demographic
trait diversity to be positively associated with
ecosystem productivity (Fig. 1C, H3).
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To quantify tree growth, longevity, and stature
for a wide range of species across biogeographic
gradients and test our three core hypotheses, we

first grouped the stem-level tree data into equally
sized hexagon grids (size ~250,000 km2) and
developed species-specific survival- and growth-

generalized linear mixed-effects models that
included tree diameter at breast height (dbh)
at the first census interval as apredictor variable
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Fig. 1. Conceptual diagram of our core aims and associated hypotheses.
(A) The expectation is that trees should align along the fast-slow continuum, with fast-
growing, short-lived species on one end of the spectrum and slow-growing, long-lived
species on the other end (H1). (B) Life history trait relationships should be
phylogenetically conserved and should covary across biogeographic gradients, leading to

more conservative life history strategies in low-resource environments (low soil and
nutrient environments and colder temperatures) (H2). (C) Lastly, we expect the range of
tree life history strategies (i.e., convex-hull volume in life history trait space that is
occupied by species) to vary predictably across biogeographic gradients, with
demographic trait diversity being positively associated with ecosystem productivity (H3).
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and grid cell as a random effect (SM,materials
and methods). We then used the survival and
growth coefficients to fit size-dependent inte-
gral projection models (IPMs) and derive age-
related traits from size-dependent probabilities
for each species within each grid cell (SM, ma-
terials and methods) (15–17, 26–28). IPMs dy-
namically integrate size-dependent variability
in survival and growth as a continuous pro-
cess, which allowed us to use cross-sectional
data over discrete time steps tomake interspe-
cific comparisons of how many years it takes
trees to attain keymilestones in their life cycle.
We parameterized our IPMs using methods
specifically developed for trees (27–29). Vali-
dations of IPM model outputs, relative to tree
ring data, showed that this parameterization
method can provide realistic estimates of tree
age demographics (27).
We used our species-specific IPMs and

age-from-stage methods to calculate several
quantitative measures of growth, longevity,
and stature. Specifically, we calculated the num-
ber of years it takes for trees to grow from 10 to
20 cm in diameter (fig. S2, path a.2) and to grow

from 10 cm to the 70th quantile of their size
distribution (fig. S2, path a.1) (hereafter re-
ferred to as “growth strategies”). The 10-cm-
diameter lower-bound threshold was chosen
because it was the size at which point trees
were consistently monitored across the forest
networks, and the 70th quantile threshold was
chosen because it reflects amature size at which
point trees have approached their ultimate
position in the forest. We also calculated two
quantitative measures of tree longevity, includ-
ing their average remaining life expectancy
from 10 cm in diameter and theirmaximal life-
span age (95% cohort mortality from 10 cm)
and a measure of maximal tree stature (size at
maximal life-span age) (fig. S2, path b) (15–17).
These mean estimates capture the pace of life
for trees (growth, longevity, and stature) on
the basis of observed climate conditions over
the last century (derived from dynamical data
collected between 1926 and 2014; see SM, ma-
terials and methods).
Our estimates of remaining life expectancy

from 10 cm dbh range from 1.2 to 3195 years,
with a mean value of 60 years in the tropics

and 95 years in the extratropics (Fig. 2A). This
trend matches our theoretical expectation of
broadscale tree life history diversification pat-
terns (Fig. 1B) and confers with known tree
longevity hotspots, in which the oldest recorded
species occur in temperate conifer and boreal
forests (12, 30). However, there was also con-
siderable overlap in the range of tree life ex-
pectancies across biomes (figs. S3 and S4, and
table S2) and wide variability in how longevity
relates to tree growth strategies and maximal
statures (Fig. 2B, figs. S3 and S4, and table S2).
It is important to note that remaining life ex-
pectancy from 10 cm dbh is a species-level mean
estimate (i.e., is conditional on surviving to 10 cm
dbh). A low life expectancy, relative to the mean
number of years it takes a species to grow from
10 to 20 cm dbh, does not imply that no indi-
viduals will reach 20 cm dbh. Instead, it im-
plies that less than half of the individuals will
survive to that size threshold.

Tree life history strategies do not strictly
follow the fast-slow continuum (H1)

To test the expectation that trees align along
the fast-slow continuum (Fig. 1A, H1), we first
examined univariate trait correlations and
found moderate support for trade-offs be-
tween tree growth, longevity, and stature (fig.
S5). For example, the number of years it takes
trees to grow from 10 to 20 cm in diameter was
positively correlated to life expectancy [Pearson
correlation coefficient (r) = 0.22) andmaximal
life-span age (Pearson’s r = 0.21)]. Similarly,
maximal tree size was positively related to life
expectancy (Pearson’s r = 0.41). The strength
of these pairwise correlations also suggests
that tree age demographics do not strictly fol-
low a single axis of variation along the fast-slow
continuum (i.e., the assumption that growth is
tightly coupled and inversely related to longev-
ity and maximal stature).
To examine the multidimensionality of tree

age demographics (Fig. 1A, H1), we analyzed
the variance-covariance matrix of tree growth,
longevity, and stature using a principal com-
ponents analysis (PCA). Highly correlated traits
that captured redundant trait information were
excluded from the PCA (fig. S5), resulting in the
inclusion of tree growth strategies (i.e., growth
from 10 to 20 cm dbh and the 70th quantile
of their size distribution), life expectancy from
10 cm dbh, andmaximal tree size (fig. S5). The
first PC axis captured 46% of the life history
trait variation and was heavily weighted by
tree growth dynamics (i.e., years to 20 cm dbh
and the 70th quantile size) (Fig. 2C). The PC
loadings also showed that slow growth was
correlated with high life expectancy and large
maximal size (table S3). The second axis cap-
tured 28% of the trait variation. The direction-
ality between the trait correlations flipped,
whereby slow growth was negatively corre-
lated to life expectancy and maximal size (table

Fig. 2. Visual illustration of tree growth-longevity-stature relationships and core demographic func-
tional types. The mean life expectancy is higher in the extratropics than in the tropics (A), with substantial
variation between tree growth strategies and life expectancies (B) (N = 6847, i.e., species X grid ID). The
other trait relationships are represented in fig. S8. The core growth-longevity-stature functional types are
presented in (C and D), which are determined using the k-means clustering algorithm of the life history trait
principal components analysis (PCA) scores. PC weights and trait correlations are reported in table S3.
The frequency density (A) and the life history traits (B) are scaled by the natural log. Data points are species-
specific and are calculated using individual tree observations and size-dependent integral projection models
(SM, materials and methods).
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S3). The third axis was heavily weighted by
tree life expectancy, with high life expectancy
being positively related to slow growth but nega-
tively related to treemaximal size (table S3). PCA
analyses for tropical versus extratropical spe-
cies retained consistent patterns in the direc-
tionality of the trait correlations among the
PC axes (table S3), illustrating the modular and
flexible nature of tree age demographics beyond
the fast-slow continuumwithin and among the
Northern and Southern hemispheres.
To further contextualize how the variation

in tree age demographics among the PC axes
shapes the overarching pace of life for trees,
we used a k-means clustering algorithm to group
species into core demographic functional types
(SM, material and methods subsection 3, and
fig. S6). Using this clustering algorithm, which
reduces the within-group sum of squares, we
found that fast-growing species aggregated
into a single stature-longevity functional type
(Fig. 2, C and D, cluster 1). Conversely, conser-
vative slow-growing species formed three dis-
tinct clusters, including low, intermediate, and
high stature-longevity functional types (Fig. 2,
C and D, clusters 2 to 4). The fast-growing
species cluster matches the theoretical expec-
tation of ubiquitous resource limitations that
constrain a species’ ability to maintain high
growth and high survival simultaneously, lead-
ing to low life expectancies and small maxi-
mal sizes (Fig. 2, C and D, cluster 1). Yet, the
emergence of three distinct clusters for slow-
growing species suggests that conservative trees
are less constrained in their pace of life. At one
end of these three conservative growth trait clus-
ters were species with high life expectancies but
small maximal sizes (Fig. 2, C andD, cluster 4),
and at the other end were species with low life
expectancies but large maximal sizes (Fig. 2, C
and D, cluster 3). Clustering analyses for trop-
ical versus extratropical species indicate that the
tropics retain the full range of demographic
functional types (fig. S7, four distinct clusters).
Conversely, the extratropical species group into
two to three demographic functional types of
predominantly slow-growing conservative clus-
ters (fig. S7, two to three distinct clusters). To-
gether, these results provide key insight into
the core groups of demographic functional types
that shape the structural complexity and dy-
namics of tropical versus extratropical forests.
Ourbroadscaleassessmentof growth-longevity-

stature relationships for a wide range of spe-
cies across the Americas is consistent with
trends derived from tropical forest plots,
which found that survival and growth rates
over discrete size ranges differed substan-
tially among species and diminished as trees
attained larger sizes (31–37). Similarly, although
tree-ring data showed that annual growth rates
were negatively correlatedwith observedmax-
imal ages (12), there was more variation in
observed maximal ages for species with fast

versus slow growth (12, 14). Together, these
emergent patterns illustrate the modular and
flexible nature of trees that extend beyond
the fast-slow continuum (Fig. 2, C and D, and
figs. S3 and S4) and highlight the tremen-
dous variation in tree life expectancies across
forest biomes (Fig. 2A and figs. S3 and S4),
with some of the oldest living species having
a remaining life expectancy >2000 years (such
asTsugaheterophylla andSequoia sempervirens).
Building on these foundational insights from

predominantly tropical ecosystems, our results
provide a novel perspective that contributes
to our fundamental understanding of tree age
demographics. By converting survival andgrowth
rates over species life cycles to age-based traits,

our results provide insight into the time it
takes trees to reach their ultimate positions in
the forest and theirmean age at death (e.g., life
expectancy). This allowed us to quantify the
pace of life for a wide range of species across the
Americas and identify the core demographic
functional types more directly linked to carbon
turnover. The emergence of the slow-growth
short–life span functional trait cluster is in line
with previous research from tropical forests,
which showed that some short-stature trees had
slow growth and low survival (31, 32, 34, 38).
This emergent trend may be an indication of
maladapted species or a mediated effect of en-
vironmental disturbance (10, 32, 33). Conversely,
it could be the result of energetic investments in

Fig. 3. Tree life history traits across our temperature index. (PC axis 1; for a comprehensive list of
temperature variables, see SM, materials and methods). (A) Overall, we found low phenotypic correlations
(variance-covariance of standardized traits) among tree growth, longevity, and stature across our biogeographic
indexes, suggesting that there is weak support for coordinated trade-offs over evolutionary time (i.e., organismal
function that supports conservative growth does not necessarily trade off with organismal function needed to
maintain high longevity). (B to D) We also find a strong effect of temperature on tree life history traits, with
little additional variation explained by soil or precipitation (figs. S12 and S13 and table S5). The temperature
gradient is derived from a PCA of nine temperature variables and represents a gradient from intermediate
temperatures in the tropical moist forest of the Southern Hemisphere to colder temperatures in the boreal north (from
left to right of the x axis). The y axes are scaled by the natural log and the x axes are scaled to a mean of zero and a SD
of 1. Data points are species-specific and are calculated using individual tree observations to fit size-based integral
projection models for each species within each grid cell ID (total of 1127 species and 6847 trait values) (SM, materials
and methods). Model coefficients of the multiresponse Bayesian model are reported in fig. S12 and table S5.
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reproduction over species’ life spans (net repro-
ductive rate) that we were not able to capture in
our analysis (5, 11, 31, 34). Regardless of the
mechanisms, our findings provide a novel per-
spective on the multidimensionality of tree age
demographics for a wide range of phylogenetic
and geographical groups. Furthermore, our find-
ing of emergent differences in the number of
demographic functional types in the tropics
versus extratropics offers novel insight into
the mechanisms that shape the dynamics and
structure of forests across the Americas.

Weak coordination in the strength of life history
trade-offs across biogeographic gradients (H2)

To test for emergent patterns in the strength of
tree life history trade-offs across biogeographic
gradients (Fig. 1B, H2), we fit a multiresponse
Bayesian generalized mixed-effects model that
included the first PC axis for each of three
comprehensive sets of variables related to soil,
temperature, and precipitation as fixed effects
and the phylogenetic relatedness as a random

effect (SM, materials and methods; table S4;
and figs. S6 to S8) (39). These abiotic indexes
were selectedbecause they are known to strong-
ly regulate photosynthetic capacity and plant
growth and are commonly assumed to induce
life history trade-offs. This approach allowed
us to test for covariation in life history trait
responses across soil, temperature, and pre-
cipitation indexes and control for the effects of
phylogenetic ancestry (40). These soil, temper-
ature, and precipitation variables were based
on mean conditions from 1997 to 2013 (SM,
materials and methods, and table S4), which
overlap with the time window that our dynam-
ical tree data were collected. The expectation
is that tree life history trade-offs are shaped
by the shared influence of abiotic factors and
phylogenetic constraints, with colder temper-
atures and lower resource availability pushing
species toward the conservative end of the life
history trait spectrum (Fig. 1B, H2).
Our results show that there is a strong rela-

tionship between temperature and tree life

history traits, with colder temperatures being
associated with conservative growth [b = −0.02,
confidence interval (CI) = (−0.03, −0.01)] and
high life expectancies [b = −0.07, CI = (−0.05,
−0.08)] (Fig. 3 and fig. S12). Conversely, our
precipitation and soil indices had a weak ef-
fect on life history traits (fig. S12 and table S5).
Consistent with Amazon research (41), we
found that tree life history traits were phylo-
genetically conserved (Pagel’s l ranging from
0.88 to 0.99; fig. S14 and table S6). Yet, we also
found low phenotypic correlations among our
life history traits, indicating that the strength
of trade-offs between tree growth, longevity,
and stature do not strongly covary across bio-
geographic gradients (Fig. 1B, H2). For exam-
ple, the phenotypic correlation between the
number of years it takes trees to grow to 20 cm
dbh and their life expectancy from 10 cm dbh
was 0.18 (Fig. 3A). Together, these results show
that, although tree life history traits are phy-
logenetically conserved [D deviance information
criterion (DIC) null model versus phyloge-
netic model = 76832], growth-longevity-stature
relationships are not driven by genetic link-
ages or shared selective pressures that act on
both traits independently over evolutionary
time across broadscale resource gradients
(table S6) (42).
Although our results offer the most compre-

hensive assessment of tree age demographics
across broadscale resource gradients, it is im-
portant to note the data gap in the subtrop-
ics (i.e., across Mexico and northern Central
America; fig. S1). This data gap could help ex-
plain the noticeable difference in the range of
life history trait strategies between the North
American temperate forests (low trait varia-
tion) and South American tropical forests (high
trait variation) (Fig. 3, B to D, and fig. S1). This
data gap highlights the need for increased
sampling efforts in these understudied regions
of the world and should be a priority of future
research and funding.
Our findings are in line with trade-offs be-

tween physiological and morphological plant
features linked to individual fitness and life
history evolution, one reflecting leaf economic
variables related to photosynthetic activity
and growth potential and the other associated
with morphological features related to light
competition and plant height (43–45). Yet,
similarly to our results, the dominant axes of
physiological and morphological plant fea-
tures did not strongly covary across latitudi-
nal gradients (44, 45). Together, our findings
and previous research suggest that organis-
mal function that supports rapid growth is not
necessarily linked to organismal function that
results in lower life expectancies and small
maximal sizes. These emergent patterns sug-
gest that rapid shifts in climate conditions
may have divergent effects on the relation-
ship between biomass accumulation in tree

Fig. 4. The relationship between the demographic trait diversity of forests and ecosystem productivity
(H3).We find that the demographic trait diversity is positively related to species richness (A), with increasing
demographic trait diversity (i.e., convex-hull volume in life history trait space that is occupied by species)
across a mean annual temperature gradient (B). In line with two nonmutually exclusive hypotheses in evolutionary
biology and functional ecology, we find a positive association between demographic trait diversity and
aboveground net primary productivity (NPP) (C and D). It is important to note that NPP was based on remotely
sensed estimates and that these analyses do not establish causality in the directionality of this relationship
[(C) and (D)]. The fully parameterized model in (D) includes the demographic trait diversity and mean annual
temperature. Demographic trait diversity and NPP were scaled to a mean of zero and a SD of 1. Average
marginal effects (AME) represent the response per unit increase for each predictor variable.
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growth and biomass retention in tree lon-
gevity, with important implications for mod-
eling the global carbon balance in a changing
world (46).

Demographic diversity varies predictably
across biogeographic gradients (H3)

To characterize the range of life history strat-
egies that are expressed by trees across broad-
scale biogeographic gradients, we first calculated
the convex-hull volume in demographic trait
space within each grid cell (SM, materials and
methods) (47) and compared the relationship
between the demographic trait diversity of
forests and well-established patterns in spe-
cies richness. The convex-hull volume was cal-
culated by using the life history trait PC scores
for axes 1 to 3, which together captured 95% of
the life history trait variation. We then tested
whether the demographic trait diversity of
forests varied predictably across biogeographic
gradients and explored potential links between
demographic trait diversity and remotely sensed
estimates of potential aboveground net pri-
mary productivity (NPP) (Fig. 1C, H3, and SM,
materials and methods) (48). The expectation
is that the diversity of life history trait strat-
egies that are expressed by trees should vary
predictably across biogeographic gradients,
with higher demographic diversity being posi-
tively associated with aboveground productivity.
Our results illustrate that the demographic

trait diversity of forests follows well-established
patterns in species richness [Fig. 4A, adjusted
coefficient of determination (adj R2) = 0.65, P <
0.001]. We also found that the demographic
diversity of forests varied predictably across
biogeographic gradients, with high demo-
graphic trait diversity across warm tropical
forests and low diversity of predominantly
slow-growing, long-lived species in the cold
temperate and boreal forests (adj R2 = 0.40,
P < 0.001; Fig. 4B and table S7). Lastly, we
found a positive correlation between the de-
mographic diversity of forests and remotely
sensed estimates of ecosystem productivity
(Pearson’s r = 0.71).
The emergence of a positive association be-

tween the demographic trait diversity and
ecosystem productivity is in line with two non-
mutually exclusive hypotheses. From an evolu-
tionary perspective, ecosystem productivity is
thought to drive species diversification and
niche differentiation (49). Conversely, follow-
ing widely established relationships between
biodiversity and ecosystem function, more de-
mographically diverse forests are commonly
assumed to have access to a larger resource
pool and should thus bemore productive (50, 51).
In this study, we found moderate support for
both hypotheses. Specifically, we found that
ecosystem productivity was predictive of de-
mographic trait diversity across broadscale
biogeographic gradients (adj R2 = 0.49, P <

0.001; Fig. 4C and table S7). At the same
time, ecosystem productivity was jointly influ-
enced by temperature (averagemarginal effect =
0.83, P = 0.04; Fig. 4D) and demographic trait
diversity (average marginal effect = 1.43, P <
0.001; Fig. 4D). This positive association was
consistent across the tropics (adj R2 =0.26, P <
0.01; table S7) and extra-tropics (adj R2 = 0.84,
P < 0.01; Fig. 4D and table S7). It should be
noted that NPP was strongly correlated with
mean annual temperature (Pearson’s r= 0.94),
which did not allow us to explicitly test for the
individual and combined effect of these var-
iables on demographic trait diversity. Although
our broadscale analysis does not establish cau-
sality in the direction of these relationships, it
does highlight the inextricable link between
demographic trait diversity and ecosystem
productivity across forest biomes.
The established association between demo-

graphic trait diversity and ecosystem produc-
tivity is in line with emergent patterns derived
from tropical forest plots, which found that
the demographic composition of forests was
predictive of empirically derived measures of
aboveground carbon dynamics (32). Similarly,
our findings match theoretical expectations
that the pace of life of organisms within a com-
munity (e.g., life expectancy and generation
time) should strongly regulate the relationship
between carbon turnover (ecosystem fluxes)
and carbon retention (ecosystem pools) (52). It
is important to note that the association be-
tween demographic trait diversity and ecosys-
tem productivity was derived from multiyear
averages in remotely sensed NPP from 1997 to
2013 and frommean estimates of tree growth–
longevity–stature relationships that were based
on the current distribution of species (i.e., de-
rived from dynamical data collected from the
1900s to 2000s). This approach did not allowus
to account for potential biogeographic biases in
the effects of human disturbance on species di-
versity (i.e., between boreal and tropical forests).
Yet, by quantifying the current distribution of
demographic functional types across broad-
scale resource gradients, our results provide a
powerful backdrop for parameterizing next-
generation vegetation models to simulate forest
carbon turnover rates across a range of current
and future conditions.
More generally, our analysis offers strong

empirical support for the expectation of high
demographic trait diversity in tropical forests
as comparedwith temperate and boreal forests.
This multibiome finding supports the commu-
nity assembly theory of strong abiotic filtering
in boreal regions, which results in a restricted
species pool of predominantly slow-growing,
long-lived species (Fig. 1C, H3). This emergent
pattern is congruent with known variability in
physiological leaf trait characteristics across
biogeographic gradients (43–45), with decreas-
ing variation in leaf economic traits from lower

to higher latitudes (53). Similarly, our resultsmatch
well-established species richness–productivity
relationships across global forests (51, 54) and
community structure–productivity relation-
ships (55). Yet, although it makes intuitive
sense that the demographic diversity of forest
communities follows well-established patterns
in species richness (49, 50), our findings es-
tablish a more direct link to the demographic
mechanisms that generate global variation in
ecosystem carbon turnover.

Conclusions

Our broadscale analysis reveals the remarkable
diversity of life history strategies that exist for
tree species across the Americas. Weak trade-
offs between tree growth, longevity, and stature
across biogeographic gradients demonstrate
the modular and flexible nature of trees, high-
lighting the diversity of evolutionary trajecto-
ries that have arisen to address the ecological
puzzle of survival. In addition, from a functional
perspective, we found that although acquisi-
tive trees sequester carbon at faster rates, they
also generally appear constrained to smaller
maximum sizes and shorter life spans that
translate to lower carbon storage and faster
carbon turnover. More importantly, we found
that more demographically diverse forests
tend to be more productive at the ecosystem
scale across the tropics and extratropics. These
findings have important implications for in-
forming global restoration and conservation
efforts and for understanding the fundamen-
tal feedback between biodiversity and climate
change mitigation.
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