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1  |  INTRODUC TION

Life history theory predicts functional traits related to resource up-
take, use and storage to be related to growth, survival and reproduc-
tion, following the live fast—live slow continuum (Díaz et al., 2016; 
Reich, 2014; Stearns, 1999). At one end of the spectrum, trees with 
larger (thinner) leaves and higher phosphorous and nitrogen content 
represent an acquisitive leaf function, prioritizing a rapid resource 

uptake (higher photosynthetic capability) and higher turnover (lower 
leaf lifespan) (Wright et al., 2004; but see Osnas et al., 2013). Such 
a trait combination will generally imply faster growth, leading to 
lighter wood with lower resistance to mechanical stress, which in 
turn may lead to higher mortality (Kraft et al., 2010). This strat-
egy is often linked to rapid reproduction, where a higher number 
of smaller seeds are produced with a lower construction cost per 
seed unit (Adler et al., 2014; Poorter et al., 2008). In the tropics, taxa 
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Abstract
1. Leaf and wood functional traits of trees are related to growth, reproduction, and 

survival, but the degree of phylogenetic conservatism in these relationships is 
largely unknown. In this study, we describe the variability of strategies involving 
leaf, wood and demographic characteristics for tree genera distributed across the 
Amazon Region, and quantify phylogenetic signal for the characteristics and their 
relationships.

2. Leaf and wood traits are aligned with demographic variables along two main axes 
of variation. The first axis represents the coordination of leaf traits describing 
resource uptake and use, wood density, seed mass, and survival. The second axis 
represents the coordination between size and growth. Both axes show strong 
phylogenetic signal, suggesting a constrained evolution influenced by ancestral 
values, yet the second axis also has an additional, substantial portion of its vari-
ation that is driven by functional correlations unrelated to phylogeny, suggesting 
simultaneously higher evolutionary lability and coordination.

3. Synthesis. Our results suggest that life history strategies of tropical trees are gen-
erally phylogenetically conserved, but that tree lineages may have some capa-
bility of responding to environmental changes by modulating their growth and 
size. Overall, we provide the largest- scale synopsis of functional characteristics 
of Amazonian trees, showing substantial nuance in the evolutionary patterns of 
individual characteristics and their relationships.

K E Y W O R D S
ecophysiology, functional traits, life history, macroecology, phylogenetic conservatism, tree 
physiology, tropical ecology
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presenting these characteristics are typically identified as pioneers, 
with a higher capability to reach and rapidly colonize disturbed 
areas, as well as a lower tolerance to mechanical stress, herbivory 
and pathogens (Turner, 2001), and a prioritization of fecundity over 
longevity (Adler et al., 2014). At the other end of the spectrum trees 
have a conservative leaf function, with well- defended leaves with 
higher construction costs (longer leaf lifespan) but slower return 
on investment of nutrients (lower photosynthetic capacity) (Wright 
et al., 2004). This trait combination is most frequently associated 
with slower growth rates that result in denser and more resilient 
wood (Adler et al., 2014; Chave et al., 2009). Trees with this strategy 
often have higher investment per unit seed, which constrains the 
amount of seeds that a given individual can produce in a given year, 
but increases seed and seedling's probability to survive, including 
in shaded conditions (Moles & Westoby, 2006). This strategy may 
also be related with a longer lifespan, and then, lifetime seed pro-
duction may be high even when presenting a low annual produc-
tion (Moles, 2018). In the tropics, these genera are identified as 
stress- tolerant, prioritizing longevity over fecundity. Despite slower 
growth rates, they can reach bigger sizes through longer lifespans 
and greater resistance to disturbances (Turner, 2001).

The fast- slow continuum may not always hold however, partic-
ularly in the highly diverse tropics, where different combinations of 
functional traits may appear. This is the case of the coordination of 
leaf size and chemistry and the decoupling of wood and leaf traits 
(Baraloto et al., 2010; Fortunel et al., 2012). Trees with a slower re-
turn on investment of nutrients and dry mass in leaves can have a 
lighter wood while trees with a faster return on investment in leaves 
can present denser wood. It has also been shown that species with a 
fast strategy can also reach large sizes (long- lived pioneers) (Poorter 
et al., 2008; Rüger et al., 2018). Other studies have shown repro-
ductive strategy to be independent of the fast- slow continuum and 
describe a growth- survival continuum (Salguero- Gómez et al., 2016) 
that is related to size and chance to become a reproductive indi-
vidual, or adult (Rüger et al., 2018). Finally, some recent results 
show that the relationship between growth and mortality may not 
always be evident in the tropics (Russo et al., 2021) and that the 
fast- slow continuum does not capture the demographic strategy of 
long- lived pioneer species, especially important in the tropics (Rüger 
et al., 2020). Therefore, even if general patterns related to the fast- 
slow continuum seem to hold, some results suggest there may be 
a higher complexity in these hyper diverse ecosystems that may 
benefit from new analytical frameworks that move beyond an axis- 
decomposition perspective.

Accounting for evolutionary history, for example, with phyloge-
nies, when analysing relationships between plant function and de-
mography can also help clarify the meaning of these patterns, testing 
whether a given strategy appeared multiple times in recent evolu-
tionary time (referred to as labile evolution) or whether it appeared 
in deeper evolutionary time and was subsequently maintained in de-
scendants (referred to as conserved evolution). Individual traits re-
lated to leaf and wood function (Flores et al., 2014; Sanchez- Martinez 
et al., 2020) and to demography (Coelho de Souza et al., 2016) have 

been reported to show phylogenetic, or evolutionary, conservatism, 
as measured by phylogenetic signal (the degree of correlation be-
tween phylogenetic relatedness and trait value similarity). However, 
whether these patterns are independent for each trait or shared 
amongst traits cannot be elucidated from individual trait patterns, 
and individual trait patterns give little insight into process.

To address this issue, we quantify phylogenetic conservatism in 
trait correlations themselves, by quantifying the amount of correla-
tion amongst traits that is related to phylogeny. When the correla-
tion between a pair of traits is strongly related to phylogeny, this 
indicates that the correlation is present at both deep and shallow 
evolutionary timescales, that is, across ancestral lineages, genera 
and species, which we label as a pattern of phylogenetic conser-
vatism and interpret as being due to constrained trait evolution. 
Alternatively, when trait correlations are independent of the phy-
logeny, processes leading to their covariation may be acting in more 
recent evolutionary timescales (e.g., across genera or species only) 
independently of their ancestry, pointing to a more labile, yet still 
coordinated evolution (Sanchez- Martinez et al., 2020). Thus, exam-
ining the phylogenetic structure of trait correlations can give greater 
insight into the evolutionary processes that have shaped trait vari-
ation amongst taxa than simply examining phylogenetic signal for 
individual traits one by one.

A quantification of phylogenetic conservatism in the correlations 
of functional traits and demographic characteristics in tropical tree 
taxa is still lacking, despite its heuristic value. Our study evaluates 
the evolutionary conservatism (or lack thereof) for Amazonian tree 
genera in the coordination of functional characteristics describing 
leaf function (resource uptake, use and storage) and wood function 
(resistance to stress, and size) with those describing demography 
(growth, reproduction and mortality). First, we describe the general 
trade- offs between functional and demographic characteristics in 
Amazonian tree taxa and quantify phylogenetic conservatism in the 
main axes of variation and their correlations. Then, we further ex-
plore the degree of phylogenetic conservatism in individual trait–
trait correlations to extend the two- axis perspective.

2  |  METHODS

2.1  |  Data

We first assembled a list of all tree species present across the 
Amazon Basin Region within the ATDN network of 2186 plots, which 
span the major environmental gradients of the region (ter Steege 
et al., 2013, 2020) (see ter Steege et al., 2020 for a description of the 
dataset and its geographical extent). We compiled genus- level data 
on: (1) specific leaf area (m2 kg−1, specific leaf area)—related to pho-
tosynthesis and herbivore defence; (2) leaf nitrogen, phosphorous 
and carbon content (g m−2, N, P, and C, respectively)—related to pho-
tosynthesis, nutrition and support function (Baraloto et al., 2010; 
Fortunel et al., 2012; Kattge et al., 2020; Kraft et al., 2008; Paine 
et al., 2012; Patiño et al., 2012); (3) wood density (g cm−3)—related 
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to mechanical support function; and (4) maximum diameter as a 
proxy of whole plant size (cm, Diametermax)—related to structural 
support and access to light. We also compiled data on three func-
tional characteristics related to demography: (1) maximum growth 
rate (cm year−1, Growth R.max)—related to growth capability; (2) mor-
tality rate (% of trees with diameter at breast height [DBH] >10 cm 
dying year−1, Mortality R.)—related to lifespan (Coelho de Souza 
et al., 2016); and (3) seed mass (g)—related to reproductive potential 
(Foster & Janson, 1985; Hammond & Brown, 1995). As seed mass 
varies over several orders of magnitude, we used a logarithmic scale 
(Hammond & Brown, 1995; ter Steege & Hammond, 2001). We de-
cided to use seed mass as a proxy of reproductive strategy based on 
its data availability and its widely reported positive relationship with 
seedling emergence and successful sapling recruitment (Henery & 
Westoby, 2001; Mazer, 1990; Moles & Westoby, 2006; Westoby 
et al., 1996). However, we acknowledge that seed mass may not fully 
represent the whole range of reproductive strategies. All variables 
were checked for normality, and mortality rate, maximum growth 
rate, and maximum diameter were subsequently log- transformed to 
improve normality.

We calculated genus- level mean trait values, and matched 
them with a previously published genus- level phylogeny (Neves 
et al., 2020) using the ape R package (Paradis & Schliep, 2019). 
Overall, we obtained trait values for 1036 genera which were repre-
sented in the phylogeny (Table S1 to see the number of genera with 
data for each trait). We focused our analyses at the genus level due 
to challenges with identification to the species- level in the tropics, 
particularly for trees where data are often collected from sterile in-
dividuals, that is, without flowers or fruits (Baker et al., 2017). Our 
analyses therefore focus on deep evolutionary patterns related to 
the diversification of genera in Amazon trees.

2.2  |  Principal component analyses

We implemented principal component analyses (PCA) on leaf and 
wood functional traits (specific leaf area, leaf N, P, and C content, 
wood density and maximum diameter) and demographic character-
istics (maximum growth rate, mortality rate and seed mass) sepa-
rately and jointly (the latter referred to as the integrative PCA) using 
the prcomp function of the stats R package (R Core Team, 2020). In 
each case, plots showing the first principal components were gener-
ated using the factoextra R package (Kassambara & Mundt, 2020). 
Principal component analyses were conducted using those genera 
with complete observations for all the variables (N = 197). To en-
sure that the higher number of functional traits in relation to demo-
graphic characteristics did not affect the structure of the integrative 
PCA, we repeated the PCA using the same number of functional and 
demographic variables, keeping the functional traits with the low-
est correlation values (specific leaf area, wood density and maximum 
diameter). Results did not differ (Figure S1). To test for the sensi-
tivity of the integrative PCA to the taxa included, we performed a 
bootstrap procedure randomly sampling 95% of the data available 

and performed a PCA on that sample. This procedure was repeated 
100 times. We show how the first principal components converge 
to similar values (Figure S2a–c) and that their difference with the 
PCA reported in the main text (i.e., using the whole dataset) is mainly 
distributed around zero (Figure S2d–f). Phylogenetic principal com-
ponent analyses were also implemented by means of the phytools R 
package (Revell, 2009) to ensure that the structure of the PCA was 
similar with this approach (Figure S3). We acknowledge that using 
principal component analyses with a low number of variables may 
not be very useful in terms of dimensionality reduction. This could 
be the case particularly for principal components calculated for de-
mographic characteristics (maximum growth rates, mortality rates, 
and seed mass). However, PCA was the best approach to extract 
orthogonal axis of variation related to function and demography, al-
lowing us to focus on the correlation between these axes (i.e., corre-
lation between main axes of variation related to different functional 
and demographic strategies). This allowed us to complement the 
trait- by- trait analyses with a more general evaluation of the coordi-
nation between functional and demographic axes.

2.3  |  Phylogenetic Signal calculation

We estimated the level of phylogenetic conservatism for individual 
traits by calculating their phylogenetic variance, which is a measure 
of the amount of variance explained by the phylogenetic structure, 
ranging from 0 (no variance related to the phylogeny) to 1 (100% 
of the variance explained by the phylogeny). (Table S1). To do so, 
we used the computeVarianceCovariancePartition function of the 
package TrEvol (Sanchez- Martinez et al., 2024). That function uses 
Bayesian phylogenetic mixed models (BPMMs) from the MCMCglmm 
R package (Hadfield, 2010) to estimate phylogenetic variance (Vphylo, 
amount of variance in a given trait that is related to the phylogenetic 
structure) and residual variance (Vres, non- phylogenetically related 
variance). Phylogenetic signal is described as the amount of variance 
for a given trait that is related to the phylogeny, divided by the total 
trait variance (Pagel, 1999), and is calculated as it follows:

As the Bayesian framework operates with posterior distributions 
of estimates, we calculated phylogenetic signal for the posterior dis-
tributions of the variance portions, obtaining a distribution for each 
phylogenetic signal measure from which mean and credible intervals 
were calculated. p- Values related to the probability that the distribu-
tion contained zero were calculated in the TrEvol package, importing 
functions from the BayesR R package (Makowski et al., 2019).

2.4  |  Correlation calculation

We calculated the total correlation between individual pairs 
of traits, which was then decomposed into a phylogenetically 

PS =

Vphylo

Vphylo + Vres

.
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conserved portion and non- phylogenetically conserved portion 
by means of phylogenetic mixed models (Table S2). The two por-
tions sum to the total correlation. The phylogenetically conserved 
correlation refers to the portion of the total correlation that is 
phylogenetically structured, while the non- phylogenetically con-
served correlation is the portion of the total correlation that is 
independent of the phylogenetic structure. To calculate these co-
efficients we used the computeVarianceCovariancePartition func-
tion of the TrEvol package (Sanchez- Martinez et al., 2024), which 
uses BPMMs from the MCMCglmm R package (Hadfield, 2010) to 
partition the amount of variance–covariance on pairwise traits 
related to the genus- level phylogeny. Correlation coefficients are 
calculated as follows:

 

 

where COVT1,T2

phylo
 and COVT1,T2

res
 are phylogenetic and non- phylogenetic 

(residual) covariances between two traits (T1 and T2), Vphylo and Vres 
are phylogenetic and non- phylogenetic (residual) variances for each 
trait. As with the analyses of phylogenetic signal, we obtained a dis-
tribution of correlation estimates in each case from which mean and 
credible intervals were calculated as well as a p- value related to the 
probability of the distribution containing zero. Correlation coefficients 
were calculated for each pair of traits as well as for each pair of prin-
cipal components coming from distinct principal component analyses 
(i.e., using just leaf and wood functional traits vs. just demographic 
characteristics).

We acknowledge that some of the studied traits may present 
directional relationships (i.e., variability in one trait being the mech-
anism driving variability in others), which could be characterized, 
for instance, by means of phylogenetic comparative methods such 
as phylogenetic least squares (Symonds & Blomberg, 2014). We did 
not use this methodology because our main aim was to characterize 
phylogenetic conservatism in trait covariances, for which correlation 
frameworks are more suitable (Westoby et al., 2023). Future works 
elucidating the causal trait networks will help complement the cor-
relation perspective, elucidating directional effects between func-
tional and demographic traits.

We used the plotVcv and the plotNetworks functions of the TrEvol 
package (Sanchez- Martinez et al., 2024) to display phylogenetic sig-
nal and correlation results. In the latter case, the function calculates 

network metrics (He et al., 2020). These metrics are edge density 
(ED), describing the proportion of actual connections amongst 
nodes out of all possible connections, and the maximum and mean 
absolute correlation coefficient (|r|max and |r|mean) as a measure of the 
strength of the correlation amongst traits. In this framework, high 
ED represents high coordination between all traits, and high |r|max 
and |r|mean represent networks with a higher dependence amongst 
related traits (He et al., 2020). We used the plotData function of the 
TrEvol R package to plot principal components on the phylogeny.

3  |  RESULTS

3.1  |  Functional traits and demography conform to 
two main axes of variation in Amazonian tree taxa

Wood and leaf functional traits (wood density, maximum diameter, 
specific leaf area, and leaf N, P, and C content) related to the whole 
plant economic spectrum (Reich, 2014) and demographic char-
acteristics (maximum growth rate, mortality rate, and seed mass) 
conformed to two main integrative principal components, which 
summarized 51% of the total variance in demographic and functional 
characteristics. The first integrative principal component, explaining 
31% of the variance, represented the trade- off between resource 
acquisitiveness versus longevity and investment per unit seed. High 
scores represented genera with higher wood density and lower spe-
cific leaf area, leaf N, and P content. These genera also tended to 
present higher seed mass and lower mortality rates. Low scores rep-
resented genera with lower wood density and higher specific leaf 
area, leaf N, and leaf P content. These genera also tended to present 
lower seed mass and higher mortality rates (Figure 1).

The second integrative principal component explained 20% of 
the functional variance and was mainly related to size (maximum di-
ameter), leaf C content and maximum growth rates. High scores rep-
resented genera with larger sizes, higher leaf C content, and higher 
maximum growth rates. Low scores represented genera with smaller 
sizes, lower carbon content in leaves, and slower growth (Figure 1). 
The third integrative principal component explained 16.9% of the 
variance and showed a correlation between growth and mortality 
(Figure S4).

Principal component analyses based only on functional traits or 
only on demographic characteristics supported these general pat-
terns. The first functional trait principal component, explaining 40% 
of the variance, represented the correlation between wood density 
and leaf economics (represented by specific leaf area, leaf N, and P 
content). The second functional principal component explained 20% 
of the functional trait variance and represented the correlation be-
tween maximum diameter and leaf C content (Figure S5a). The first 
demographic principal component, explaining 55% of demographic 
characteristics variance, described the negative correlation between 
seed mass and mortality rates. The second demographic principal 
component, explaining 27% of the variance was related to maximum 
growth rate (Figure S5b).

Total correlation =

COVT1,T2

phylo
+ COVT1,T2

res
√

(

V
T1
phylo

× V
T2
phylo

)

+

(

VT1
res

× VT2
res

)

,

Phylogenetic correlation =

COVT1,T2

phylo
√

(

V
T1
phylo

× V
T2
phylo

)

+

(

VT1
res

× VT2
res

)

,

Non − phylogenetic correlation =

COVT1,T2
res

√

(

V
T1
phylo

× V
T2
phylo

)

+

(

VT1
res

× VT2
res

)
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3.2  |  Phylogenetic Signal in functional traits and 
demography

Individual functional traits had significantly non- zero phylogenetic 
variance (referred to as phylogenetic signal hereafter), ranging from 
0.30 (mortality rates) to 0.79 (seed mass), and phylogenetic structure 
explained the majority of the trait variance (i.e., >50% or phyloge-
netic signal >0.5) for wood density, leaf N content, maximum diame-
ter, and seed mass (4 of the 9 traits) (Figure 2b,c, pie charts, Table S1). 
The first two integrative principal components had Phylogenetic 
Signals of 0.61 and 0.51, respectively (61% and 51% of their variance 
was phylogenetically structured, respectively). The first and the sec-
ond functional trait principal components, representing variability in 
leaf and wood functional traits, had Phylogenetic Signals of 0.45 and 
0.51, respectively. The first and the second demographic principal 
components, representing variability in demographic characteris-
tics, had Phylogenetic Signals of 0.42 and 0.51, respectively.

3.3  |  Phylogenetic conservatism in the 
coordination of functional traits and demography

The phylogenetically conserved portion of trait- to- trait correlations 
was greater than the non- phylogenetic portion in 24 of the 27 sig-
nificant correlations found (Figure S6; Table S2), consistent with the 
Phylogenetic Signal for integrative principal components summariz-
ing overall functional trait and demographic variability.

Leaf functional traits (specific leaf area, leaf N, and leaf P) showed 
positive correlations with each other and were negatively correlated 
with wood density (Figure 2). These results describe how genera 

with larger and/or thinner leaves with greater N and P contents tend 
to have lower wood density while those with smaller leaves and/
or thicker leaves with lower N and P contents tend to have a higher 
wood density. Maximum diameter was largely uncorrelated to leaf 
functional traits and wood density.

Positive correlations amongst specific leaf area, leaf N, and 
leaf P content showed both phylogenetically conserved and non- 
phylogenetically conserved portions. Meanwhile, leaf C content 
was correlated with leaf P and N content in a non- phylogenetically 
conserved manner. The coordination between leaf traits and wood 
density was attributed entirely to the phylogenetically conserved 
portion (Figure 2b,c), meaning that covariation between leaf and 
wood functional traits is phylogenetically structured.

Demographic characteristics also showed significant correla-
tions, with some portions of those correlations showing phylogenetic 
structure. Mortality rate was positively correlated with maximum 
growth rate and negatively with seed mass. This result shows how 
genera with higher maximum growth rates and lower seed mass tend 
to have high mortality rates. The correlation between mortality rate 
and maximum growth rate showed no phylogenetic conservatism, 
while the correlation between mortality rate and seed mass showed 
a higher phylogenetic conservatism (Figure 2b,c).

Leaf and wood functional traits showed significant correlations 
with maximum growth rate, mortality rate, and seed mass, confirm-
ing results from the principal components analyses. Specific leaf 
area, leaf N, and leaf P content showed positive correlations with 
mortality rate and maximum growth rate and negative correla-
tions with seed mass. Leaf C content showed only a low negative 
correlation with mortality rate and a low positive correlation with 
seed mass. Wood density was negatively correlated with mortality 

F I G U R E  1  Functional, demographic, and integrative axis of variation. First principal components using leaf (specific leaf area; nitrogen, 
phosphorous, and carbon content, N, P, and C) wood (wood density, and maximum diameter, Diametermax) and demographic characteristics 
(maximum growth rate, Growth R.max; mortality rate, Mortality R. and seed mass). Only genera with complete data for all variables are 
represented (197 genera). Variable contributions are shown as arrows, coloured in light blue (leaf and wood functional traits) and red 
(demographic characteristics). Principal- axis interpretation is shown in bold letters. Pictures of seeds (fruit when no seed images are 
available), leaves and whole trees for four species representing the four extreme strategies are shown. Phylogenetic signal and amount of 
variance explained by each axis in percentage are shown for each axis.
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rate and maximum growth rate and positively correlated with seed 
mass. These results described how genera with larger and/or thinner 
leaves with greater N and P contents and low wood density tend to 
have higher maximum growth rate and mortality rate and lower seed 
mass. Genera with small and/or thicker leaves with lower N and P 
content and high wood density tend to have lower maximum growth 
rate and mortality rate and higher seed mass (Figure 2a). Maximum 
diameter was mainly positively correlated to maximum growth rate, 
but also showed a positive correlation with seed mass and negative 
correlation with mortality rate.

The correlations amongst leaf and wood functional traits and 
demographic characteristics showed a strong phylogenetic struc-
ture. However, there was some degree of independence from the 

genus- level phylogeny for some of these correlations. Correlations 
with significant non- phylogenetic portions were: the positive cor-
relations of leaf C and P content with seed mass, the negative cor-
relation of wood density with mortality rate and maximum growth 
rate, and the positive correlation of maximum diameter with maxi-
mum growth rate.

The trait- network approach allowed us to calculate network 
metrics describing the overall structure in the correlation matrix 
amongst functional and demographic characteristics. Network 
metrics clearly show that there is a higher structure in the phyloge-
netically conserved portion of the trait- to- trait correlation matrix. 
The trait network constructed using the phylogenetically con-
served portion showed higher Edge Density (ED) and higher mean 

F I G U R E  2  Variance–covariance networks. Trait correlation networks among leaf (specific leaf area; nitrogen, phosphorous and carbon 
content, N, P, and C), wood (wood density, and maximum diameter, Diametermax) and demographic characteristics (maximum growth rate, 
Growth R.max; mortality rate, Mortality R. and seed mass). Leaf and wood functional traits are represented as nodes (circles) in light blue 
and demographic functional traits are shown in light red. Edges (lines connecting nodes) represent (a) total correlation, (b) phylogenetically 
conserved portion of the correlation and (c) non- phylogenetically conserved portion of the total correlation. Solid green lines represent 
statistically significant positive correlation coefficients and dashed red lines represent significant negative correlation coefficients. Line 
width is proportional to the absolute value of the correlation coefficient. Pie charts in b and c represent trait variance related to the 
phylogeny (i.e., phylogenetic signal) and trait variance not related to the phylogeny, respectively. Node size is proportional to the number of 
connections per node (i.e., degree). Three network metrics are shown in each case.
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    |  189SANCHEZ-MARTINEZ et al.

and maximum absolute correlation coefficients (|r|mean and |r|max). A 
higher ED means there is a higher number of significant correlations 
amongst traits, that is, higher evolutionary integration.

To summarize the trait correlation network perspective, we also 
explored the correlation between the main axes of variation related 
to function and demography. To do so, we tested for phylogenetic 
conservatism in the correlation between the first two functional 
principal components obtained using leaf and wood functional traits 
and the first two demographic principal components obtained using 
demographic characteristics. The first functional component rep-
resenting the negative correlation of specific leaf area, leaf P, and 
leaf N content with wood density (i.e., acquisitive to conservative 
resource- use strategies) was correlated to the first demographic 
component representing the negative correlation between mortality 
rate and seed mass (i.e., R to K reproduction and survival strategies). 
This correlation was explained entirely by the phylogenetically con-
served portion of the correlation.

The second functional component representing the posi-
tive correlation between maximum diameter and leaf C content 
(i.e., small to large trees) was positively correlated to the second 

demographic component representing maximum growth rates. This 
correlation presented both phylogenetically conserved and non- 
phylogenetically, that is, evolutionarily labile, correlation portions 
(Figure 3). The first functional principal component was not cor-
related with the second demographic principal component, and the 
second functional principal component was not correlated with the 
first demographic principal component.

4  |  DISCUSSION

4.1  |  Leaf and wood function is coordinated with 
tree survival and reproduction, while stature is 
coordinated with growth in Amazonian tree taxa

Amazonian tree genera show a diverse range of relationships be-
tween functional traits and demographic characteristics, which can 
be aligned broadly along two axes of variation. The first axis describes 
the coordination between leaf and wood functional traits associated 
with carbon uptake and stress tolerance (Reich, 2014), highlighting 

F I G U R E  3  Functional and demographic axis correlations. Total, phylogenetically conserved and non- phylogenetically conserved 
correlation portions between functional and demographic principal components. Phylogenetic signal is also shown and represented as pie 
charts for each principal component. Values for genera with complete observations are plotted on the genus- level phylogeny. Bars are 
coloured by taxonomic order and the most important taxonomic order names are shown. Signif. codes: “***”: p < 0.001; “ns”: p > 0.1.
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the coordination between the leaf and the wood economics spec-
trum (Chave et al., 2009; Wright et al., 2004), which are aligned in 
turn with seed mass and mortality rates. This axis describes, at one 
end, how genera with relatively larger and/or thinner leaves with 
higher N and P content tend to have lower wood density, potentially 
related to a higher water transport capability, lower defence and/
or higher vulnerability to disturbances such as strong winds (Chave 
et al., 2009). This combination of trait values represents an acquisi-
tive strategy in leaf and wood functional traits. These genera also 
have a lower life expectancy and smaller seeds, the latter potentially 
leading to a higher total production of seeds per year and better colo-
nization ability (Moles & Westoby, 2006). This combination of traits 
points to a prioritization of annual fecundity over survival, where fe-
cundity is more strongly influencing mean fitness (Adler et al., 2014), 
and corresponds to the classic definition of an R strategy (MacArthur 
& Wilson, 1967; Pianka, 1970).

The opposite end of the first axis describes genera with smaller 
and/or thicker leaves and lower N and P contents, likely related to 
lower productivity and a higher leaf lifespan (Wright et al., 2004). 
These genera show higher wood density, potentially related to lower 
water transport capability but higher tolerance to hydraulic and me-
chanical stress, pathogens, and parasites (Chave et al., 2009). This 
combination of trait values represents a conservative strategy in leaf 
and wood functional traits. These genera also have longer lifespans, 
potentially emerging from a higher stress tolerance, while also pre-
senting a higher investment per unit seed, potentially leading to a 
lower production of seeds and less frequent recruitment but with 
a higher probability of success (Moles & Westoby, 2006; Smith & 
Fretwell, 1974). This combination of traits points to a prioritization 
of survival over annual fecundity, with survival more strongly influ-
encing mean fitness (Adler et al., 2014), characteristic of the classic K 
strategy (MacArthur & Wilson, 1967; Pianka, 1970) (Figure 1).

This first axis corresponds partially to the previously reported 
shade- tolerance and size axis (Turner, 2001), and to the fast- slow con-
tinuum (Stearns, 1999). However, we show that the fast (pioneer) to 
slow (stress- tolerant) continuum is largely decoupled from correlated 
characteristics of maximum growth rate and maximum size, which in-
stead form a second integrative axis of variation, as reported in global 
analyses (Díaz et al., 2016). Genera with a high growth capability and 
faster growth tend to reach larger stature, independently of their 
resource- use strategy, lifespan, or reproductive strategy. At the other 
end of the axis, genera that grow more slowly tend to present smaller 
sizes (Figure 1). Functional traits related to leaf and wood economics 
(Chave et al., 2009; Wright et al., 2004) may be constraining life history 
traits related to survival and reproduction, while they are relatively in-
dependent of an axis related to size and growth at the genus level. It 
is worth noting however that we characterized size as maximum size 
(i.e., adult size), related to access to light in the reproductive stage, 
which even if shown to be related to seedling growth (Poorter, 2007), 
may have a weak relationship in some cases (Needham et al., 2022). 
We did not detect the independence of reproductive strategy from 
the fast- slow continuum as previously reported (Rüger et al., 2018; 
Salguero- Gómez et al., 2016). However, we acknowledge that the 

characterization of reproductive strategies in our study is limited to 
seed mass and may not be representing all its variability.

While tropical tree genera can occupy any portion of functional- 
demographic space along these two axes (Figure 1), it can be heuris-
tically useful to broadly group genera based on ‘end point’ strategies 
related to resource uptake and use, stress tolerance, reproduction, 
survival, growth, and stature. The first group is characterized by an 
acquisitive R strategy with large size and fast growth and can be iden-
tified as the large pioneer strategy (e.g., Ceiba). The second group pres-
ents a conservative K strategy with a larger size and faster growth and 
can be identified as the large stress- tolerant strategy (e.g., Manilkara). 
The third group displays an acquisitive R strategy with a smaller size 
and relatively slower growth (in terms of diameter increments) and 
can be identified as a small pioneer strategy (e.g., Quararibea). Finally, 
the fourth group shows a conservative K strategy with a smaller size 
and slower growth and can be identified as a small stress- tolerant strat-
egy (e.g., Psidium). Note that these groups represent extreme relation-
ships as described by the two integrative principal components and 
that intermediate strategies are the most prevalent.

Analysing trait- to- trait relationships in a pairwise manner tends 
to support the main axes of variation that we have described, 
but also reveals substantial nuance in trait- to- trait relationships 
(Figure 2). For instance, these results show how the two integrative 
axes are connected by means of the positive correlation between 
growth rates and leaf nitrogen content, by a negative correlation 
between growth rates and wood density, and by the positive cor-
relation between mortality and growth rates. Higher leaf nitrogen 
content is related to higher growth rates, which leads to lower wood 
density related to higher mortality rates, linking the fast- slow axis 
with growth. This is consistent with the tendency of pioneer strate-
gies to present faster growth, even though our results show how this 
coordination is not strong.

4.2  |  The coordination of leaf and wood function 
with survival and reproductive strategies is 
phylogenetically conserved, while the size- growth 
coordination shows a substantial element of 
evolutionarily lability

The coordination between resource uptake and use (leaf and wood 
economics), stress tolerance, reproduction, and survival was almost 
entirely phylogenetically structured. As a result, their covariation is 
conserved through evolutionary time leading to a pattern of phy-
logenetic conservatism that involves multiple functional and demo-
graphic components. Under this scenario, lineages may not be able 
to rapidly change their functional and demographic strategies related 
to reproduction and survival, evidenced by closely related species 
having similar strategies (Losos, 2008). This pattern likely emerges 
from conserved and slow adaptation in response to edapho- climatic 
drivers (Crisp & Cook, 2012), leading to a predominant effect of en-
vironmental filtering influencing the distribution of those strategies 
over environmental gradients (light, water, and nutrient availability 
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gradients, amongst and within sites). As a result, phylogenetic posi-
tion of genera is expected to be informative of resource economics, 
survival and reproductive strategies in Amazonian trees.

The coordination between size and growth has similar phyloge-
netic conservatism but also a substantial portion of its correlation 
showing evolutionary lability. This result suggests that the evolution 
of different maximum growth rates and maximum sizes is partially 
evolutionarily constrained but, on top of that, there is some vari-
ance that presents a correlated, but phylogenetically independent, 
pattern of change.

Overall, these results suggest that the distribution of leaf and 
wood economics, survival, and reproductive strategies has likely 
been constrained over deep evolutionary timescales in Amazonian 
trees. In contrast, changes in growth rates may allow Amazonian 
trees to adjust to different levels of resource availability, which may 
also affect maximum size. These traits are interconnected and their 
variability is determined by multiple processes, leading to a mixed 
pattern where evolutionary lability and phylogenetic conservatism 
coexist.

4.3  |  The meaning of phylogenetic 
conservatism and evolutionary lability and in the 
coordination of plant function and demography

The quantification of Phylogenetic Signal in individual characteris-
tics, such as functional traits, is a common application of phylogenetic 
comparative methods that helps compare the evolution of different 
characters (Ackerly, 2009; Freckleton et al., 2002; Losos, 2008). 
However, its capability to show how functional strategies are dis-
tributed or originate is limited, as these strategies often involve 
several traits related to different biological processes. Looking at 
the phylogenetic structure of trait correlations can help reveal how 
evolution drove the co- occurrence of different trait values, which 
in turn represent coordinated strategies, moving past the univariate 
perspective (Sanchez- Martinez et al., 2024; Westoby et al., 2023). 
We posit that quantifying the phylogenetic conservatism in trait cor-
relations underlying life- history strategies can help in hypothesizing 
eco- evolutionary processes shaping them.

Phylogenetic correlation may appear as an effect of phenotyp-
ical and genetic common factors that constrain the evolution of 
multiple traits, leading to phylogenetic autocorrelation in trait syn-
dromes. However, this phylogenetic conservatism in trait relation-
ships could also result from a conserved pattern of adaptation (i.e., 
phylogenetic niche conservatism) (Sanchez- Martinez et al., 2020). 
In this case, even if a common underlying genotype or phenotype 
may not exist, specific trait values may tend to be selected under a 
given set of environmental conditions as they represent successful 
ecological strategies. This scenario, coupled with stabilizing selec-
tion may lead to a pattern whereby closely related taxa present sim-
ilar strategies in response to similar environmental conditions (i.e., 
phylogenetic niche conservatism) (Crisp & Cook, 2012). For example, 
let us consider the pioneer strategy, which benefits from resource 

availability ensuring a fast resource uptake and use. This strategy 
may be selected against when resources are scarce, constraining the 
appearance of new variations in traits conforming it in descendant 
taxa. The stress- tolerant strategy may be similarly constrained to 
environments with a higher resource limitation, showing trait syn-
dromes that are not able to uptake and use resources fast. Under 
stabilizing selection, these trait syndromes are expected to be main-
tained within lineages over evolutionary times. Therefore, ecological 
strategies under stabilizing selection are expected to strongly deter-
mine the persistence of taxa under different conditions, conforming 
to a pattern of phylogenetic niche conservatism.

Some correlations amongst traits appear to consistently have 
both phylogenetically conserved and non- phylogenetically con-
served portions in Amazonian tree taxa, such as the correlation 
amongst specific leaf area, leaf N, and P content, or the correlation 
between size and growth rates. These trait relationships may pres-
ent a hardwired integration potentially underlined by phenotypic 
and genetic causal effects. Therefore, these traits' variability and 
their covariation may be influenced by slow adaptation related to 
the general characterization of the species' ecological niche, while 
also being responsive to more recent variability in environmental 
conditions. A lower number of trait correlations appear only to have 
significant, non- phylogenetic portions. One important example is 
the correlation amongst size, growth, and mortality rates. These 
evolutionarily labile correlations indicate that large taxa with high 
mortality and high growth rates appeared multiple times in distantly 
related lineages. These evolutionarily labile strategies may be more 
able to change in response to recent environmental modifications 
happening on shorter evolutionary timescales. This variability can 
be detected as a small correlation between ancestor and descendant 
values, which can lead to a higher divergence in trait values in closely 
related taxa. These strategies may be more flexible, responding to 
environmental changes over shorter timescales, by, for instance, 
increasing growth rates when conditions are favourable, which will 
affect tree size.

4.4  |  Caveats and future directions

The current study has some caveats, such as the use of a genus- level 
phylogeny and mean trait values for genera, which may be under-
estimating intra- generic functional and demographic diversity and 
phylogenetic structure. Genus- level data were used because of the 
high uncertainty in both species identification and species- level phy-
logenies in the tropics (Baker et al., 2017). Focusing on the genus- 
level allowed us to better elucidate the effects of deep evolutionary 
divergence in functional ecology. In the future, species- level analy-
ses will further clarify whether these patterns are maintained and 
extend to more recent evolutionary timescales. In this regard, fu-
ture studies characterizing the predictability of species values from 
genus means will be of great interest.

Our estimates of the Phylogenetic Signal may be prone to some 
bias related to the fact that we lack trait or DNA sequence data for 
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many tree genera in the Amazon. Moreover, we did not use data 
from angiosperms with non- tree growth forms or environments 
outside the lowland tropical rainforest. However, previous studies 
have addressed this issue and reported that even if this may be true, 
Phylogenetic Signal metrics bring meaningful information (Molina- 
Venegas & Rodríguez, 2017). Moreover, in our case, we found similar 
patterns of phylogenetic conservatism in PCAs using the subset of 
genera for which we have complete trait data (197) as in pairwise 
analyses of individual traits where sample sizes often exceeded 400 
genera.

We also included a limited set of functional traits and demo-
graphic characteristics, those which had wide data availability. A 
better characterization of functional strategies and demographic 
strategies will allow further elucidation of tropical trees' ecological 
strategies and their macroevolutionary patterns. Our results will 
need to be revisited once more functional and demographic data 
become available for Amazonian taxa. In this regard, the inclusion 
of hydraulic and photosynthetic traits will allow us to better under-
stand the mechanistic link between resource uptake and use, stress 
tolerance, and demography (Tavares et al., 2023). Including more 
functional traits related to reproduction will also allow to better 
characterize different strategies that we may not have been able to 
represent in the current work. Finally, the inclusion of environmental 
data in future studies will help elucidate the adaptive meaning of the 
strategies described.

We acknowledge that functional traits and demography may act 
at different scales (i.e., individual physiology to population ecology) 
and selective pressures on them may differ. However, we believe 
that understanding the patterns of variation and covariation in these 
variables in different locations can help better understand the pro-
cesses underlying their evolution. In this study, we use principal 
component analyses jointly with trait networks to describe general 
patterns in functional and demographic strategies while elucidating 
the deep nuance in the data and results. By doing so, we show for 
the first time, a pattern of phylogenetic conservatism in the coor-
dination of leaf and wood economics spectra with demographic 
characteristics in Amazonian tree taxa. This pattern can be used to 
perform data imputation in tropical tree taxa, which can help with 
the data scarcity problem in highly diverse regions. These predic-
tions would enable explanation of the geographical distribution of 
functional characteristics and assessment of climate change impacts 
on ecosystems but needs to be complemented by sampling efforts 
to assess whether these macroevolutionary patterns hold at the 
level of species and intra- generic clades.
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